【图像融合】基于RGB和最佳波段图像融合的两尺度图像融合附Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 图像融合技术旨在将多源图像的信息有效结合,生成包含更多细节和更丰富信息的融合图像。本文研究了一种基于RGB图像和最佳波段图像融合的两尺度图像融合方法。该方法首先分别对RGB图像和最佳波段图像进行多尺度分解,然后在高频和低频两个尺度上分别进行融合,最后将融合后的高频和低频分量进行重构,得到最终的融合图像。通过实验验证,该方法能够有效地融合RGB图像和最佳波段图像的信息,提高图像的细节清晰度和信息量,并在一定程度上克服了单一尺度融合方法的局限性。

关键词: 图像融合;RGB图像;最佳波段;多尺度分解;高频信息;低频信息

1 引言

随着遥感技术和数字图像处理技术的飞速发展,多源图像融合技术受到了广泛关注。图像融合技术能够有效地将来自不同传感器、不同波段或不同时间的图像信息进行整合,生成包含更多细节、更丰富信息和更高分辨率的图像,从而提高图像的质量和应用价值。在众多图像融合方法中,基于多尺度分解的图像融合方法因其能够有效地提取图像的细节信息和纹理信息而备受青睐。

本文针对RGB图像和最佳波段图像融合问题,提出了一种两尺度图像融合方法。RGB图像具有丰富的色彩信息和空间信息,而最佳波段图像则具有较高的光谱分辨率和特定波段的信息。将两者融合,可以充分利用各自的优势,获得兼具色彩信息和光谱信息的融合图像,这在遥感图像处理、医学图像分析等领域具有重要的应用价值。不同于以往的单尺度融合方法,本文提出的两尺度方法分别对高频和低频信息进行融合处理,有效地提高了融合图像的质量。

2 方法论

本方法采用基于小波变换的多尺度分解策略,并结合基于图像显著性分析的最佳波段选择方法。具体步骤如下:

2.1 最佳波段选择: 首先,需要确定最佳波段。本文采用基于图像熵和图像方差的综合评价指标来选择最佳波段。图像熵反映了图像的信息量,图像方差反映了图像的对比度。选择熵值和方差值均较高的波段作为最佳波段。 具体公式如下:

通过计算每个波段的熵值和方差值,并赋予一定的权重,得到综合评价指标,选择综合评价指标最高的波段作为最佳波段。

2.2 多尺度分解: 对RGB图像和选择的最佳波段图像分别进行小波变换,得到不同尺度的低频和高频系数。本文采用二维小波变换,分解层次根据图像分辨率和实际需求而定。通常情况下,两层或三层分解已经能够满足大部分应用需求。

2.3 高频系数融合: 对于高频系数,采用基于局部区域能量的融合规则。具体方法是,计算每个尺度上RGB图像和最佳波段图像高频系数的局部能量,选择局部能量较大的系数作为融合系数。局部能量的计算可以使用局部区域的方差或能量等指标。 此步骤侧重于保留图像的边缘和细节信息。

2.4 低频系数融合: 对于低频系数,采用加权平均融合规则。 权重的选择取决于RGB图像和最佳波段图像的质量和信息含量。 可以通过对图像进行预处理,例如图像增强或去噪,来提高图像质量,并根据图像质量来调整权重。 此步骤侧重于保留图像的整体信息和纹理信息。

2.5 图像重构: 将融合后的高频和低频系数进行小波逆变换,得到最终的融合图像。

3 实验结果与分析

本文使用公开的遥感图像数据集进行实验,对不同图像融合方法进行比较分析。实验结果表明,本文提出的两尺度融合方法在主观视觉效果和客观评价指标方面均优于单尺度融合方法。 具体来说,融合图像的细节清晰度更高,信息量更丰富,图像的对比度和清晰度也得到了改善。 我们采用峰值信噪比(PSNR)和结构相似性指数(SSIM)等客观指标对融合图像进行评价,实验结果显示本文方法的PSNR和SSIM值均高于其他对比方法。

4 结论与未来工作

本文提出了一种基于RGB和最佳波段图像融合的两尺度图像融合方法,该方法通过对高频和低频信息进行分别融合,有效地提高了融合图像的质量。 实验结果验证了该方法的有效性。

📣 部分代码

    for i=0:255

    Sal_Tab(j+1) = Sal_Tab(j+1)+count(i+1)*abs(j-i);    

    end      

end

out=zeros(size(img));

for i=0:255

    out(img==i)=Sal_Tab(i+1);

end 

out=mat2gray(out);

end

⛳️ 运行结果

🔗 参考文献

"X. Sun, Y. Zhu and X. Fu, "RGB and Optimal Waveband Image Fusion for Real-Time Underwater Clear Image Acquisition," IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-17, 2023."

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值