【数据驱动】概率性能保证的自动控制器调整数据驱动场景优化Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

自动控制器在现代工业、机器人技术和人工智能领域发挥着至关重要的作用。其性能直接影响着系统的效率、稳定性和安全性。传统控制器设计依赖于精确的系统模型和专家经验,然而在许多实际应用中,精确的模型难以获取,系统参数也可能随时间变化。因此,数据驱动的方法逐渐成为控制器设计和优化领域的研究热点,并展现出巨大的潜力。本文将深入探讨数据驱动场景下,如何实现概率性能保证的自动控制器调整,以提升系统的鲁棒性和可靠性。

传统的控制器设计通常基于明确的系统模型,例如线性二次高斯控制 (LQG) 或模型预测控制 (MPC)。这些方法依赖于精确的系统动态模型和噪声统计特性。然而,在许多实际应用中,获取精确的模型是困难甚至不可能的。例如,复杂的工业过程、非线性系统和存在未建模动态的系统,都难以建立精确的数学模型。在这种情况下,数据驱动的方法提供了有效的替代方案。数据驱动方法利用系统运行的历史数据,通过机器学习算法学习系统的动态特性,并设计相应的控制器。

数据驱动控制器设计通常包含以下步骤:数据收集、模型识别、控制器设计和控制器验证。数据收集阶段需要采集系统运行的输入输出数据,并保证数据的质量和代表性。模型识别阶段利用收集的数据,学习系统的动态特性,构建近似模型。常用的方法包括支持向量机 (SVM)、神经网络 (NN) 和高斯过程回归 (GPR) 等。控制器设计阶段基于学习得到的模型,设计相应的控制器。常用的方法包括基于模型的控制器设计方法,例如自适应控制和强化学习等。控制器验证阶段评估设计的控制器性能,并进行必要的调整。

然而,单纯依靠数据驱动的方法存在一些挑战。首先,数据质量对模型识别的准确性和控制器的性能有直接的影响。噪声、异常值和不完整的数据都会影响模型的精度,进而影响控制器的性能。其次,数据驱动方法通常难以提供明确的性能保证。传统模型驱动方法能够通过理论分析保证控制器的稳定性和性能指标,而数据驱动方法则缺乏相应的理论支撑,其性能往往依赖于经验和大量的测试。因此,如何在数据驱动场景下实现概率性能保证的自动控制器调整成为关键问题。

为了解决上述问题,我们可以结合概率方法和数据驱动方法。概率方法能够量化不确定性,并提供性能保证。例如,我们可以利用贝叶斯方法对模型参数进行估计,并计算模型预测的不确定性。然后,将不确定性纳入控制器设计过程中,设计鲁棒控制器,以应对模型的不确定性。基于高斯过程回归 (GPR) 的控制器设计方法是一个典型的例子,它能够同时提供模型预测和预测不确定性,从而实现概率性能保证。此外,概率规划方法也能够在控制器设计中考虑各种约束和风险,例如,最小化控制器的风险,保证系统性能不低于某个阈值。

此外,强化学习 (RL) 算法在数据驱动控制器设计中也展现出强大的能力。通过与环境交互,RL 算法能够学习最优的控制策略。然而,传统的 RL 算法也难以提供性能保证。近年来,基于安全约束的强化学习算法发展迅速,这些算法能够在满足安全约束的前提下,学习最优的控制策略。例如,约束强化学习 (Constrained RL) 和安全强化学习 (Safe RL) 可以通过引入惩罚函数或约束条件,确保控制器在学习过程中不会出现危险行为,并保证系统的安全性和稳定性。

在实际应用中,需要根据具体的应用场景选择合适的算法和策略。例如,对于简单的线性系统,基于线性模型的控制器设计方法可能就足够了。对于复杂的非线性系统,则需要采用更高级的算法,例如基于神经网络或高斯过程的控制器设计方法。此外,需要根据数据的质量和数量选择合适的模型识别算法,并进行充分的模型验证。

总之,数据驱动概率性能保证的自动控制器调整是控制器设计领域的一个重要研究方向。通过结合数据驱动方法和概率方法,并充分利用最新的机器学习算法,我们可以设计出更加鲁棒、可靠和高效的自动控制器,从而提升系统的性能和安全性,并在更广泛的应用场景中发挥重要作用。未来的研究可以关注以下几个方面:开发更有效的模型识别和控制器设计算法,提高算法的鲁棒性和效率;研究更有效的概率性能保证方法,提供更精确的性能指标;探索将数据驱动方法与传统模型驱动方法相结合,以充分利用两种方法的优点。 最终目标是实现一个完全自主的、具有可靠性能保证的、适应各种复杂场景的智能控制系统。

​⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值