✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
共形阵列天线以其紧凑的结构和良好的电磁兼容性,在现代雷达、通信和电子对抗等领域得到了广泛应用。然而,在复杂电磁环境下,如何有效抑制来自不同方向和不同极化方式的干扰,成为了共形阵列波束形成技术研究的重点和难点。本文将深入探讨共形极化阵列波束形成技术,重点阐述其如何考虑信号的极化参数,在极化域和空域联合抑制干扰,从而实现对目标信号的高精度接收和处理。
传统的波束形成技术主要关注空间域的干扰抑制,例如基于最小方差无失真响应 (Minimum Variance Distortionless Response, MVDR) 算法或基于线性约束最小方差 (Linearly Constrained Minimum Variance, LCMV) 算法的波束形成器。这些算法通过调整阵列各单元的加权系数,在期望信号方向形成主瓣,而在干扰方向形成零陷,从而实现对干扰的抑制。然而,对于具有不同极化特性的干扰信号,传统的空域波束形成方法效果有限,甚至可能导致期望信号的畸变。
共形极化阵列波束形成技术的核心在于将极化信息融入到波束形成过程中。这使得波束形成器能够根据信号的极化特性进行更精细的控制,从而实现更有效的干扰抑制。具体来说,共形极化阵列的每个单元都配备了能够接收不同极化方式信号的极化敏感元件,例如双极化天线。这些元件接收到的信号包含了目标信号和干扰信号的空间信息和极化信息。
在波束形成过程中,需要对接收到的信号进行极化分解。常用的极化分解方法包括线性极化分解 (例如水平极化和垂直极化) 和椭圆极化分解 (例如利用Stokes参数表示极化状态)。通过极化分解,可以将接收到的信号表示为不同极化分量的叠加。
在此基础上,可以构建基于极化信息的波束形成算法。这些算法通常将极化信息与空间信息结合起来,在极化域和空域联合抑制干扰。一种常用的方法是基于极化滤波的波束形成。该方法首先利用极化信息对接收信号进行滤波,去除与期望信号极化状态差异较大的干扰信号,然后利用传统的空域波束形成算法进一步抑制剩余的干扰。
另一种更高级的方法是联合极化域和空域自适应波束形成。这种方法将极化信息和空间信息融合到一个统一的优化框架中,通过对加权系数进行优化,在极化域和空域同时实现对干扰的抑制。例如,可以将MVDR算法或LCMV算法扩展到极化域,通过最小化输出功率同时满足对期望信号的无失真约束来设计波束形成器。这种方法能够更有效地利用极化信息,实现更高的干扰抑制能力和更低的旁瓣电平。
然而,共形阵列的几何结构复杂,单元间的互耦效应显著,这给波束形成算法的设计带来了新的挑战。互耦效应会改变阵列单元的响应特性,导致波束形成器性能下降。因此,在设计共形极化阵列波束形成算法时,需要考虑互耦效应的影响,例如通过校正互耦矩阵或采用基于互耦补偿的波束形成算法。
此外,共形阵列的表面曲率也会影响波束形成器的性能。由于阵列单元的分布不规则,传统的均匀阵列波束形成算法不再适用。因此,需要采用能够适应共形阵列几何结构的波束形成算法,例如基于阵列流形的波束形成算法。
总而言之,共形极化阵列波束形成技术通过在极化域和空域联合抑制干扰,显著提高了对目标信号的接收和处理能力。未来的研究方向包括:开发更鲁棒的算法来应对互耦效应和共形阵列的几何复杂性;探索更有效的极化信息提取和利用方法;以及研究基于深度学习的智能波束形成技术,以进一步提高干扰抑制性能和适应复杂电磁环境的能力。 持续的研究与发展将推动共形极化阵列波束形成技术在雷达、通信和电子对抗等领域取得更大的突破。
📣 部分代码
%%% A_i为虚拟干扰导向矢量 2*sensor_num×2*N_i
%%%%%% a_d为期望方向导向矢量 2*sensor_num×2
%%%%%% A_scan为阵列流型矩阵 2*sensor_num×2*N_ang_scan
%%%%%% angle_i为二维虚拟干扰方向 2×N_i
%%%%%% angle_scan为二维角度扫描范围 2×N_ang_scan
%%%%%% angle_d为期望方向 2×1
%%%%%% beamwidth为主瓣宽度 2×1
% x = position(:,1);
% y = position(:,2);
⛳️ 运行结果
🔗 参考文献
[1] 张远芳.极化域‐空域联合的参数估计和干扰抑制方法研究[D].电子科技大学,2016.DOI:10.7666/d.D00988968.
[2] 李槟槟,陈辉,刘维建,等.主瓣干扰下极化阵列子阵级空域-极化域联合自适应测角方法:CN202110248827.4[P].CN113030845A[2025-01-21].
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇