✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
本文深入探讨了基于块压缩感知 (Block Compressed Sensing, BCS) 结合空间方向预测编码的图像压缩技术。具体而言,我们分析了 BCS 与稀疏方向预测编码 (Sparse Direction Prediction Coding, SDPC)、差分脉冲编码调制 (Differential Pulse Code Modulation, DPCM) 以及标量量化 (Scalar Quantization, SQ) 三种不同预测编码方法相结合的性能,并考察其在图像压缩过程中对峰值信噪比 (Peak Signal-to-Noise Ratio, PSNR) 的影响。实验结果表明,不同的预测编码方法与 BCS-SPL 结合后,在不同的压缩率下呈现出不同的性能特点。在特定场景下,基于 BCS-SPL+SDPC 的方法能够更好地利用图像的空间相关性,实现更高效的压缩;而 BCS-SPL+DPCM 和 BCS-SPL+SQ 则在某些情况下展现出更好的计算效率和实现上的简便性。本文通过理论分析和实验验证,为理解和选择适合特定需求的压缩方法提供了有价值的参考。
1. 引言
图像压缩技术是现代信息处理领域的核心组成部分,广泛应用于图像存储、传输、处理等多个领域。随着高清图像和视频的日益普及,对高效图像压缩技术的需求也愈发迫切。传统的图像压缩方法,如 JPEG 和 JPEG 2000,主要基于变换编码和量化,在低压缩率下性能良好,但在高压缩率下容易出现块效应和模糊等问题。近年来,压缩感知 (Compressed Sensing, CS) 理论的出现为解决这些问题提供了新的思路。CS 理论指出,在信号满足稀疏性条件的前提下,可以通过远低于奈奎斯特采样率的采样获取信号的绝大部分信息。块压缩感知 (BCS) 是 CS 理论在图像压缩领域的一个重要应用,它将图像划分为多个小块,并对每个块进行独立的 CS 采样和重构。然而,BCS 往往需要较高的采样率才能获得较好的重构质量。为了进一步提高压缩效率,人们开始将 BCS 与预测编码技术相结合,以期充分利用图像的空间相关性,减少冗余信息。
本文重点关注基于 BCS 与空间方向预测编码 (Spatial Direction Prediction Coding, SDPC) 、差分脉冲编码调制 (DPCM) 以及标量量化 (SQ) 三种不同预测方法的结合,即 BCS-SPL+SDPC、BCS-SPL+DPCM 和 BCS-SPL+SQ。我们将在以下章节中详细分析这三种方法的原理、优缺点,并通过实验验证其性能,特别是在不同压缩率下对峰值信噪比 (PSNR) 的影响。
2. 相关理论基础
2.1 压缩感知 (Compressed Sensing, CS) 理论
CS 理论的核心思想在于,对于一个稀疏或可压缩的信号 x ∈ ℝ<sup>N</sup>,可以通过一个远小于信号维度的测量矩阵 Φ ∈ ℝ<sup>M×N</sup> (M << N) 获得测量值 y = Φx ∈ ℝ<sup>M</sup>。只要信号足够稀疏,就可以通过优化算法从测量值 y 中高精度地重构原始信号 x。常用的重构算法包括 L1 正则化、贪婪算法等。
2.2 块压缩感知 (Block Compressed Sensing, BCS)
BCS 将图像划分为互不重叠的块,然后对每个块进行独立的 CS 采样和重构。这有效地减少了 CS 算法的计算复杂度,并使其更容易应用于大规模图像处理。在 BCS 中,每个块的 CS 测量可以表示为:
y<sub>i</sub> = Φx<sub>i</sub>
其中,x<sub>i</sub> 是第 i 个图像块的向量化表示,y<sub>i</sub> 是对应的测量值,Φ 是测量矩阵。
2.3 稀疏方向预测编码 (Sparse Direction Prediction Coding, SDPC)
SDPC 是一种利用图像块内像素之间方向相关性的预测编码方法。它通过识别图像块中像素变化的主要方向,并沿着该方向进行预测,从而去除冗余信息。SDPC 通常需要对图像块进行方向分析,并构建相应的预测模型。
2.4 差分脉冲编码调制 (Differential Pulse Code Modulation, DPCM)
DPCM 是一种基于先前已编码像素值的预测编码方法。它将当前像素的值与预测值之间的差值进行编码,而不是直接编码像素值。这种方法充分利用了图像的空间相关性,从而减少了需要编码的数据量。
2.5 标量量化 (Scalar Quantization, SQ)
SQ 是一种简单的量化方法,它将连续的值映射到离散的值。它通过将输入值除以一个量化步长并取整实现。SQ 是一种有损压缩技术,它在减少数据量的同时也会引入量化误差。
3. 方法描述
3.1 BCS-SPL + SDPC
该方法首先将图像划分为互不重叠的块,然后对每个块执行以下步骤:
-
方向分析: 计算每个图像块的主导方向。这可以通过梯度分析或其他方法实现。
-
方向预测: 基于主导方向,利用相邻块或块内像素的值进行预测。
-
预测残差计算: 计算原始图像块与预测图像块之间的残差。
-
CS 采样: 对预测残差进行 CS 采样,得到测量值。
-
CS 重构: 使用 CS 重构算法从测量值中重构预测残差。
-
图像块重构: 将重构的残差与预测值相加,得到重构的图像块。
3.2 BCS-SPL + DPCM
该方法与 BCS-SPL + SDPC 类似,但在预测阶段采用 DPCM 方法:
-
DPCM 预测: 使用相邻块的已编码像素或块内的已编码像素对当前块的像素进行预测。
-
预测残差计算: 计算原始图像块与预测图像块之间的残差。
-
CS 采样: 对预测残差进行 CS 采样,得到测量值。
-
CS 重构: 使用 CS 重构算法从测量值中重构预测残差。
-
图像块重构: 将重构的残差与预测值相加,得到重构的图像块。
3.3 BCS-SPL + SQ
该方法将 SQ 应用于 CS 采样得到的测量值,以进一步减少数据量:
-
CS 采样: 对每个图像块进行 CS 采样,得到测量值。
-
量化: 对测量值进行标量量化。
-
反量化: 对量化后的测量值进行反量化。
-
CS 重构: 使用 CS 重构算法从反量化后的测量值中重构图像块。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇