✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab代码及仿真咨询内容点击👇
🔥 内容介绍
随着科技的飞速发展,图像数据的质量和容量持续增长。在图像控制和显示方面,越来越多的产品依赖于图像技术。图像压缩作为一种重要的多媒体服务技术,在各种应用场景中发挥着关键作用。本报告旨在提出一种基于简单编码技术——离散小波变换(DWT)的图像压缩方法,并利用遗传算法对压缩过程进行优化,以期在图像质量和压缩率之间取得更好的平衡。
传统的图像压缩技术,诸如离散余弦变换(DCT)和差分脉冲编码调制(DPCM),在某些方面存在局限性。DCT在处理高频分量时容易产生块效应,影响视觉质量。DPCM则对噪声敏感,抗干扰能力较弱。相比之下,DWT具有良好的时频局部化特性,能够将图像分解为不同频段的子带,更有利于对不同频段的图像信息进行有针对性的处理。DWT能够更好地保留图像的细节信息,减少压缩过程中的失真,从而提高压缩后的图像质量。
然而,单纯采用DWT进行图像压缩,其性能在很大程度上取决于所采用的小波基、分解层数以及量化策略等参数的选择。不同的参数组合对压缩率和图像质量的影响各异。手动调整这些参数不仅耗时费力,而且难以获得全局最优解。因此,我们引入了遗传算法(GA)来优化DWT图像压缩的过程。
遗传算法是一种模拟生物进化过程的优化算法,通过模拟自然选择、遗传和变异等机制,不断进化种群中的个体,最终找到问题的最优解或近似最优解。在图像压缩优化中,可以将DWT的参数(例如小波基的选择、分解层数的设置、量化表的设计等)编码为遗传算法的个体基因。通过交叉、变异等操作,不断产生新的个体,并利用评价函数(例如PSNR、SSIM等)对个体进行评估,选择适应度高的个体进入下一代。经过多代进化,种群中的个体将逐渐向最优参数组合逼近,从而实现图像压缩的优化。
该系统基于MATLAB平台进行开发。首先,利用DWT对输入图像进行分解,得到不同频段的子带系数。然后,利用遗传算法对DWT的参数进行优化。遗传算法的目标函数旨在最大化图像的质量,并同时考虑压缩率的约束。通过迭代优化,遗传算法将找到一组最佳的DWT参数,使得压缩后的图像在满足一定压缩率要求的同时,能够尽可能地保持原始图像的视觉质量。最后,利用优化后的DWT参数对图像进行压缩和解压缩,得到最终的压缩结果。
为了方便用户使用,系统采用图形用户界面(GUI)。用户只需在MATLAB中运行“uu.m”文件,即可启动GUI界面。用户可以通过GUI界面选择要压缩的图像,设置压缩率等参数,并观察压缩后的图像质量。该系统兼容多种图像格式,包括JPEG、PNG、BMP、JPG等。
系统的具体实现步骤如下:
-
图像预处理: 对输入图像进行格式转换、尺寸调整等预处理操作,以便于后续的DWT分解。
-
DWT分解: 利用指定的小波基和分解层数对图像进行DWT分解,得到不同频段的子带系数。
-
量化: 对子带系数进行量化,以减少数据的存储空间。量化策略的选择会直接影响压缩率和图像质量。
-
遗传算法优化: 将DWT的参数(例如小波基的选择、分解层数的设置、量化表的设计等)编码为遗传算法的个体基因。利用评价函数(例如PSNR、SSIM等)对个体进行评估,选择适应度高的个体进入下一代。通过交叉、变异等操作,不断产生新的个体。经过多代进化,种群中的个体将逐渐向最优参数组合逼近。
-
熵编码: 对量化后的子带系数进行熵编码,进一步压缩数据。常用的熵编码方法包括哈夫曼编码和算术编码。
-
解压缩: 对压缩后的数据进行解码,恢复出图像的子带系数。
-
DWT重构: 利用DWT逆变换,将子带系数重构为图像。
-
图像后处理: 对重构后的图像进行后处理操作,例如去噪、锐化等,以提高图像的视觉质量。
评价指标:
-
PSNR(峰值信噪比): 衡量压缩图像与原始图像之间的差异,数值越大,图像质量越好。
-
SSIM(结构相似性指数): 衡量压缩图像与原始图像之间的结构相似性,数值越接近1,图像质量越好。
-
压缩率: 衡量压缩后的数据大小与原始数据大小之比,数值越小,压缩效果越好。
结论:
本报告提出的基于DWT和遗传算法的图像压缩优化系统,旨在通过优化DWT的参数,在图像质量和压缩率之间取得更好的平衡。该系统采用GUI界面,方便用户使用。该系统具有一定的实用价值,可以应用于图像存储、图像传输等领域。未来可以进一步研究更加先进的压缩技术,例如深度学习图像压缩等,以进一步提高图像的压缩效率和质量。同时,可以针对不同的应用场景,优化系统的参数,以满足不同的需求。例如,在高压缩率要求的场景下,可以适当降低图像质量,以换取更高的压缩率;在对图像质量有较高要求的场景下,可以适当降低压缩率,以保证图像的视觉效果。
总而言之,基于离散小波变换和遗传算法的图像压缩优化系统具有广阔的应用前景和发展空间。 通过不断改进和完善,该系统可以为图像处理领域提供更有效的解决方案。
📣 部分代码
elseif q==p+1
D(p,q) = 1;
else
D(p,q) = 0;
end
end
end
clc
i = imread('CompressedColourImage.jpg');
r = i(:,:,1);
g = i(:,:,2);
b = i(:,:,3);
figure,imshow(i)
title('Original Image')
%for n=1:256
% histogram(1,n) = 0;
%for l = 1:size_of_image(1)
% for b = 1:size_of_image(2)
% if grays(l,b)==n
% histogram(1,n) = histogram(1,n)+1;
% end
%end
%end
%end
%x = 1:1:256;
%figure, plot(x,histogram)
[freqr xr] = imhist(r);
[freqg xg] = imhist(g);
[freqb xb] = imhist(b);
size_of_image = size(r);
number_of_pixels = size_of_image(1)*size_of_image(2);
lamda = 40;%variable to determine the amount of contrast
gamma = 50000;
% smoothing_factor = inv(((1+lamda).*eye(256) + gamma.*transpose(D)*D));
% for n = 0:1:255
% nfreqr(n+1,1) = (freqr(n+1,1) + lamda*n);
% nfreqg(n+1,1) = (freqg(n+1,1) + lamda*n);
cdfr(r(l,w)+1,1);
main_image(l,w,c+1) = cdfg(g(l,w)+1,1);
main_image(l,w,c+2) = cdfb(b(l,w)+1,1);
end
end
figure, imshow(main_image),title('Histogram Modified')
figure, hist(main_image(:,:,1),xr);
hold on
hist(main_image(:,:,2),xg);
hist(main_image(:,:,3),xb);
entropy_of_original_image = entropy(i)
entropy_of_image = entropy(main_image)
mean_Optimized = mean2(main_image)
var_optimzed = std2(main_image)
D = abs(uint8(main_image) - uint8(i)).^2;
mse = sum(D(:))/numel(main_image);
psnr = 10*log10(255*255/mse)
%mae = meanAbsoluteError(main_image,i)
%E = eme(main_image,size_of_image(1),5)
⛳️ 运行结果
🔗 参考文献
[1] 张艳.基于小波变换和人工神经网络的图像压缩方法研究[D].太原理工大学,2009.DOI:10.7666/d.d081597.
[2] 刘勇,刘宝坤,李光泉.基于MATLAB平台的遗传算法工具包[J].天津大学学报:自然科学与工程技术版, 2001, 34(4):5.DOI:10.3969/j.issn.0493-2137.2001.04.018.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇