【优化调度】基于混合NSGA II-MOPSO混合多目标遗传算法-多目标粒子群算法算法的热电联合经济排放调度附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

热电联合经济排放调度(Combined Heat and Power Economic Emission Dispatch, CHP-EED)是电力系统优化调度领域的一个重要课题,其目标是在满足电力和热力负荷需求的同时,最小化发电成本和污染物排放。传统算法在处理高维、非凸、多约束的CHP-EED问题时,往往存在早熟收敛、搜索效率低等问题。本文提出了一种基于混合NSGA II-MOPSO的多目标优化算法,该算法融合了非支配排序遗传算法II(NSGA II)的全局搜索能力和多目标粒子群算法(MOPSO)的局部搜索能力,以提高求解CHP-EED问题的性能。通过数值实验表明,所提出的混合算法能够有效地平衡发电成本和污染物排放,并优于传统的NSGA II和MOPSO算法。

关键词: 热电联合调度;经济排放调度;多目标优化;NSGA II;MOPSO;混合算法

1. 引言

随着能源需求的日益增长和环境保护意识的不断提高,热电联产(Combined Heat and Power, CHP)技术在能源系统中扮演着越来越重要的角色。CHP系统能够同时产生电力和热能,具有更高的能源利用效率和更低的排放强度。然而,如何有效地调度CHP系统,在满足电力和热力负荷需求的同时,实现经济性和环保性的双重目标,是一个复杂的优化问题。

热电联合经济排放调度(CHP-EED)就是在这样的背景下提出的。CHP-EED问题是一个典型的多目标优化问题,通常需要同时考虑发电成本、污染物排放以及各种约束条件,如电力平衡约束、热力平衡约束、机组出力上下限约束、传输网络约束等。传统的优化算法,如线性规划、二次规划等,在处理大规模、非凸、多约束的CHP-EED问题时,往往面临着计算复杂度高、求解精度低等挑战。

近年来,智能优化算法,如遗传算法(Genetic Algorithm, GA)、粒子群算法(Particle Swarm Optimization, PSO)等,在CHP-EED问题中得到了广泛应用。然而,传统的GA和PSO算法也存在一些局限性。例如,GA算法的选择、交叉、变异等操作可能会破坏Pareto最优解的结构,导致算法的收敛速度较慢;PSO算法容易陷入局部最优,难以找到全局最优解。

为了克服传统算法的不足,研究人员提出了多种改进的GA和PSO算法,例如NSGA II、MOPSO等。NSGA II采用非支配排序和拥挤度距离机制,能够有效地维持种群的多样性,并提高算法的收敛性能。MOPSO通过维护一个外部档案集来存储搜索过程中发现的非支配解,能够有效地指导粒子的搜索方向。

然而,单一的NSGA II或MOPSO算法仍然存在一定的局限性。NSGA II的局部搜索能力较弱,在复杂问题的求解过程中容易陷入局部最优;MOPSO的全局搜索能力较弱,容易受到初始种群的影响,导致算法的鲁棒性较差。

为了充分发挥NSGA II和MOPSO算法的优势,本文提出了一种基于混合NSGA II-MOPSO的多目标优化算法,该算法将NSGA II的全局搜索能力和MOPSO的局部搜索能力有机地结合起来,以提高求解CHP-EED问题的性能。

2. 问题描述

CHP-EED问题的目标是在满足电力和热力负荷需求的同时,最小化发电成本和污染物排放。其数学模型可以表示为:

目标函数:

  • 最小化发电成本:
    min F = Σ [aᵢPᵢ² + bᵢPᵢ + cᵢ]
    其中,F为总发电成本,Pᵢ为第i台机组的发电功率,aᵢbᵢcᵢ为第i台机组的成本系数。

  • 最小化污染物排放:
    min E = Σ [αᵢPᵢ² + βᵢPᵢ + γᵢ + ηᵢexp(λᵢPᵢ)]
    其中,E为总污染物排放量,αᵢβᵢγᵢηᵢλᵢ为第i台机组的排放系数。

约束条件:

  • 电力平衡约束:
    Σ Pᵢ = P_D
    其中,P_D为总电力负荷需求。

  • 热力平衡约束:
    Σ Hᵢ = H_D
    其中,Hᵢ为第i台CHP机组的热力输出,H_D为总热力负荷需求。

  • 机组出力上下限约束:
    Pᵢ_min ≤ Pᵢ ≤ Pᵢ_max
    Hᵢ_min ≤ Hᵢ ≤ Hᵢ_max
    其中,Pᵢ_minPᵢ_max分别为第i台机组的最小和最大发电功率,Hᵢ_minHᵢ_max分别为第i台CHP机组的最小和最大热力输出。

  • CHP机组运行区域约束:
    CHP机组的运行区域受到其电力和热力输出之间的关系的限制,通常需要在可行域内进行调度。

3. 混合NSGA II-MOPSO算法

本文提出的混合NSGA II-MOPSO算法的基本思想是:首先利用NSGA II算法进行全局搜索,找到一组初步的Pareto最优解;然后利用MOPSO算法对这些解进行局部优化,进一步提高解的质量。算法的具体步骤如下:

  1. 初始化: 初始化NSGA II和MOPSO算法的参数,包括种群大小、迭代次数、交叉概率、变异概率、惯性权重、学习因子等。

  2. NSGA II全局搜索: 利用NSGA II算法对CHP-EED问题进行全局搜索,得到一组初步的Pareto最优解,并将这些解存储到外部档案集中。NSGA II的主要步骤包括:

    • 种群初始化: 随机生成初始种群。

    • 非支配排序: 对种群进行非支配排序,将种群划分为不同的等级。

    • 拥挤度距离计算: 计算每个个体的拥挤度距离,用于维持种群的多样性.

    • 选择、交叉、变异: 通过选择、交叉、变异等遗传操作产生新的种群.

    • 合并和选择: 将父代种群和子代种群合并,并选择优秀的个体进入下一代.

  3. MOPSO局部优化: 利用MOPSO算法对外部档案集中的解进行局部优化。MOPSO的主要步骤包括:

    • 粒子初始化: 将外部档案集中的解作为MOPSO的初始粒子。

    • 速度更新: 根据以下公式更新粒子的速度:
      vᵢ(t+1) = w * vᵢ(t) + c₁ * rand() * (pbestᵢ - xᵢ(t)) + c₂ * rand() * (gbest - xᵢ(t))
      其中,vᵢ(t)为第i个粒子在第t次迭代时的速度,xᵢ(t)为第i个粒子在第t次迭代时的位置,pbestᵢ为第i个粒子的个体最优位置,gbest为全局最优位置,w为惯性权重,c₁c₂为学习因子,rand()为[0,1]之间的随机数。

    • 位置更新: 根据以下公式更新粒子的位置:
      xᵢ(t+1) = xᵢ(t) + vᵢ(t+1)

    • 外部档案集更新: 将搜索过程中发现的非支配解更新到外部档案集中。

  4. 迭代终止: 当达到最大迭代次数或满足其他终止条件时,算法终止。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值