【路径规划】基于RRT和帕累托最优的多智能体分散路径规划附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

多智能体系统在日益复杂的现实应用中扮演着越来越重要的角色,例如自动驾驶、仓储物流和机器人协同等。在这些应用中,为多个智能体规划出无碰撞、高效的路径至关重要。然而,传统的集中式路径规划方法在处理大规模智能体系统时,面临着计算复杂度高、鲁棒性差等挑战。为了克服这些问题,本文提出了一种基于快速探索随机树(RRT)和帕累托最优的多智能体分散路径规划方法。该方法将全局规划任务分解为多个独立的局部规划任务,每个智能体使用RRT算法独立地搜索局部最优路径。为了解决智能体之间的冲突,引入帕累托最优的概念,通过智能体之间的协商和优化,寻找一种帕累托改进的路径组合,从而实现整体系统的最优性能。实验结果表明,该方法在保证路径安全性的前提下,能够有效地降低计算复杂度,提高规划效率,并具有良好的鲁棒性。

关键词: 多智能体系统;分散路径规划;快速探索随机树(RRT);帕累托最优;冲突消解;路径优化

1. 引言

随着人工智能技术的快速发展,多智能体系统(Multi-Agent System,MAS)的应用范围日益广泛。MAS是由多个能够自主行动、相互交互的智能体组成的系统,这些智能体通过协作完成复杂的任务。在MAS中,路径规划是一个基础且重要的环节,其目标是为每个智能体找到一条从起始位置到达目标位置的最优或近似最优的无碰撞路径。

传统的路径规划方法主要分为集中式和分散式两种。集中式路径规划方法将所有智能体的信息集中到一个中央控制器中,然后由控制器统一规划所有智能体的路径。这种方法能够保证全局最优性,但其计算复杂度随着智能体数量的增加而呈指数级增长,难以应用于大规模的智能体系统。此外,集中式方法对中央控制器的依赖性强,一旦中央控制器出现故障,整个系统将无法正常运行。

与集中式方法不同,分散式路径规划方法允许每个智能体独立地进行路径规划,并通过智能体之间的通信和协商来解决冲突。分散式方法具有计算复杂度低、鲁棒性强等优点,更适合应用于大规模的智能体系统。然而,分散式方法难以保证全局最优性,容易陷入局部最优解。

为了克服传统路径规划方法的局限性,本文提出了一种基于RRT和帕累托最优的多智能体分散路径规划方法。该方法结合了RRT算法的快速搜索能力和帕累托最优的冲突消解机制,能够在保证路径安全性的前提下,有效地提高规划效率和鲁棒性。

2. 相关工作

近年来,多智能体路径规划领域涌现出大量的研究成果。根据规划策略的不同,可以将其分为以下几类:

  • 基于搜索的算法: 这类算法将路径规划问题转化为搜索问题,例如A算法、D算法等。这些算法能够保证找到最优解,但其计算复杂度较高,不适用于大规模的智能体系统。

  • 基于优化的算法: 这类算法将路径规划问题转化为优化问题,例如基于梯度下降的算法、遗传算法等。这些算法能够找到近似最优解,但其容易陷入局部最优解。

  • 基于采样的算法: 这类算法通过随机采样的方式搜索可行路径,例如概率路线图(PRM)算法、快速探索随机树(RRT)算法等。这些算法具有快速搜索能力,适用于高维空间和复杂环境。

在多智能体分散路径规划方面,常见的策略包括:

  • 基于优先级的方法: 为每个智能体分配优先级,优先级高的智能体优先规划路径,优先级低的智能体避让优先级高的智能体。这种方法简单易行,但容易导致优先级低的智能体规划效率低下。

  • 基于协商的方法: 智能体之间通过通信和协商来解决冲突,例如合同网协议、迭代式协商协议等。这种方法能够有效地解决冲突,但需要设计合理的协商机制。

  • 基于冲突消解的算法: 专门设计算法来检测和解决智能体之间的冲突,例如冲突消解算法(Conflict-Based Search,CBS)。这种方法能够有效地提高规划效率,但需要考虑冲突消解的策略。

RRT算法作为一种基于采样的路径规划算法,由于其快速搜索能力和对高维空间的适应性,被广泛应用于多智能体路径规划领域。例如,[参考文献1]提出了一种基于RRT的协作路径规划方法,该方法通过共享RRT树的信息来实现智能体之间的协作。

帕累托最优是一种多目标优化理论中的重要概念,它表示一种资源分配的状态,在这种状态下,不可能在不使至少一个主体状况变坏的情况下,使任何其他主体的状况变好。帕累托最优的概念被引入到多智能体路径规划中,用于评估路径规划结果的优劣,并指导智能体之间的协商和优化。[参考文献2]提出了一种基于帕累托最优的多目标路径规划方法,该方法考虑了路径长度、安全性等多个目标,并使用帕累托最优来选择最优路径。

3. 基于RRT和帕累托最优的分散路径规划方法

本文提出的基于RRT和帕累托最优的多智能体分散路径规划方法主要包括以下几个步骤:

3.1 初始化

  • 每个智能体独立地获取自身的位置信息(起始位置和目标位置)和周围环境信息(例如障碍物)。

  • 设定RRT算法的参数,例如采样概率、步长等。

  • 初始化帕累托最优的参考点。

3.2 RRT路径搜索

  • 每个智能体独立地使用RRT算法搜索从起始位置到目标位置的路径。

  • RRT算法的基本流程如下:

    • 从状态空间中随机采样一个点。

    • 从RRT树中找到距离该采样点最近的节点。

    • 沿着从最近节点到采样点的方向扩展一段距离,生成一个新节点。

    • 如果新节点没有与障碍物发生碰撞,则将新节点添加到RRT树中。

    • 重复上述步骤,直到找到一条从起始位置到目标位置的路径。

3.3 冲突检测

  • 每个智能体将其规划的路径广播给其他智能体。

  • 每个智能体检测自身路径与其他智能体路径之间是否存在冲突。

  • 冲突可以定义为两个或多个智能体在同一时间占据同一空间位置。

3.4 帕累托最优的冲突消解

  • 如果检测到冲突,则智能体之间进行协商,尝试寻找一种帕累托改进的路径组合,即在不损害其他智能体利益的前提下,改善自身利益。

  • 协商的具体策略可以采用多种方式,例如:

    • 基于代价的协商:

       智能体根据自身的路径代价(例如路径长度、时间)来评估让步的意愿,代价低的智能体更容易让步。

    • 基于优先级协商:

       智能体根据优先级来决定让步的顺序,优先级低的智能体优先让步。

    • 基于博弈论的协商:

       将冲突消解问题转化为一个博弈问题,智能体通过博弈的方式来寻找纳什均衡解。

  • 在协商过程中,智能体可以尝试修改自身的路径,例如绕过冲突区域、调整速度等。

  • 如果经过多次协商后,仍然无法找到帕累托改进的路径组合,则可以考虑随机选择一个智能体进行重新规划。

3.5 路径优化

  • 在完成冲突消解后,每个智能体对其规划的路径进行优化,以提高路径的平滑性和效率。

  • 常用的路径优化方法包括:

    • 路径平滑:

       使用样条曲线或其他平滑函数来对路径进行平滑处理。

    • 路径简化:

       删除路径中冗余的点,以减少路径长度。

3.6 循环迭代

  • 重复步骤3.2到3.5,直到所有智能体都找到一条无碰撞、最优或近似最优的路径。

4. 实验结果与分析

为了验证本文提出的方法的有效性,我们进行了大量的仿真实验。实验环境为一个二维平面,其中包含多个随机分布的障碍物。我们模拟了多个智能体在环境中进行路径规划的任务。

4.1 实验设置

  • 智能体数量:5-20个

  • 环境大小:100m x 100m

  • 障碍物数量:20-50个

  • RRT采样概率:0.1

  • RRT步长:1m

  • 冲突检测距离:0.5m

4.2 实验指标

  • 规划成功率:所有智能体成功找到路径的概率。

  • 规划时间:所有智能体完成路径规划所花费的总时间。

  • 路径长度:所有智能体路径长度的平均值。

  • 冲突数量:智能体之间发生冲突的次数。

4.3 实验结果

我们将本文提出的方法与传统的RRT算法和基于优先级的分散路径规划方法进行了比较。实验结果表明:

  • 规划成功率:

     本文提出的方法能够保证较高的规划成功率,即使在智能体数量较多或环境较为复杂的情况下,也能有效地找到可行路径。

  • 规划时间:

     本文提出的方法在规划时间上优于传统的RRT算法和基于优先级的分散路径规划方法。这是因为RRT算法的快速搜索能力和帕累托最优的冲突消解机制能够有效地减少搜索空间和冲突次数。

  • 路径长度:

     本文提出的方法在路径长度上与传统的RRT算法和基于优先级的分散路径规划方法相当。

  • 冲突数量:

     本文提出的方法能够有效地减少智能体之间的冲突数量,这得益于帕累托最优的冲突消解机制。

4.4 结果分析

实验结果表明,本文提出的基于RRT和帕累托最优的多智能体分散路径规划方法具有以下优点:

  • 高效性:

     RRT算法的快速搜索能力能够有效地提高规划效率。

  • 鲁棒性:

     分散式规划的架构使得系统具有良好的鲁棒性,即使部分智能体出现故障,其他智能体仍然能够正常运行。

  • 公平性:

     帕累托最优的冲突消解机制能够保证智能体之间的公平性,避免出现个别智能体过度让步的情况。

5. 结论与展望

本文提出了一种基于RRT和帕累托最优的多智能体分散路径规划方法。该方法结合了RRT算法的快速搜索能力和帕累托最优的冲突消解机制,能够在保证路径安全性的前提下,有效地提高规划效率和鲁棒性。实验结果表明,该方法在解决多智能体路径规划问题方面具有良好的性能。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab科研辅导帮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值