✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 传统的均值-方差投资组合优化方法由于其对市场风险的线性近似以及依赖于收益率的正态分布假设,在实际应用中存在诸多局限性。条件风险价值(Conditional Value-at-Risk, CVaR)作为一种更稳健的风险度量指标,近年来在投资组合优化中得到了广泛应用。本文将深入探讨使用投资组合CVaR对象进行条件风险价值(CVaR)投资组合优化的理论基础、实现方法以及实践应用,旨在为投资者提供一种更有效、更可靠的风险管理工具,以构建更加稳健的投资组合。
一、引言
投资组合优化是现代金融理论的核心组成部分,其目标是在给定的风险承受能力下最大化预期收益,或者在给定的收益目标下最小化风险。传统的均值-方差模型基于Markowitz提出的均值-方差有效前沿理论,该理论假设投资者是风险厌恶的,并通过构建有效前沿上的投资组合来达到收益和风险的平衡。然而,均值-方差模型存在一些固有的缺陷。首先,它依赖于收益率的正态分布假设,而实际金融市场的数据往往呈现出非正态性,例如尖峰厚尾等特征。其次,方差作为风险度量指标,对上行和下行风险给予同等的权重,这与投资者通常更关心下行风险的心理不符。
为了克服这些局限性,研究人员开始探索更稳健的风险度量指标,例如下偏标准差、绝对偏差、以及条件风险价值(CVaR)。CVaR不仅能够衡量投资组合的预期亏损,而且能够考虑尾部风险,即超过一定置信水平的极端损失。因此,使用CVaR进行投资组合优化,能够更好地控制下行风险,提高投资组合的抗风险能力。
二、条件风险价值(CVaR)的理论基础
CVaR,又称为预期亏损(Expected Shortfall, ES),是在给定的置信水平α下,超过风险价值(Value-at-Risk, VaR)的所有亏损的平均值。VaR是指在给定的置信水平α下,投资组合的最大可能亏损金额。换句话说,VaR表示在α的概率下,投资组合的亏损不会超过VaR值。而CVaR则进一步衡量了当亏损超过VaR值时,预期的平均亏损。
数学上,CVaR可以定义如下:
设随机变量X表示投资组合的亏损,f(x,w)表示投资组合在情景x下的亏损值,w表示投资组合的权重向量。α表示置信水平(通常为95%或99%)。
首先,计算VaR:
VaRα = inf {z | P(X ≤ z) ≥ α}
然后,计算CVaR:
CVaRα = E[X | X ≥ VaRα] = (1/(1-α)) ∫[VaRα, ∞] x * p(x) dx
其中p(x)是亏损X的概率密度函数。
从定义可以看出,CVaR不仅考虑了VaR,还考虑了VaR之外的尾部风险,因此能够更全面地衡量投资组合的风险。与方差相比,CVaR更关注下行风险,更能反映投资者的风险厌恶程度
⛳️ 运行结果
🔗 参考文献
[1] 黄向阳,陈学华,杨辉耀.基于条件风险价值的投资组合优化模型[J].西南交通大学学报, 2004, 39(4):511-515.DOI:10.3969/j.issn.0258-2724.2004.04.022.
[2] 田新民,黄海平.基于条件VaR(CVaR)的投资组合优化模型及比较研究[J].数学的实践与认识, 2004, 34(7):39-49.DOI:10.3969/j.issn.1000-0984.2004.07.008.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇