✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
非平稳信号,是指其统计特性随时间变化的信号。它们广泛存在于自然界和工程应用中,例如语音信号、生物医学信号、机械振动信号以及无线通信信号等。由于经典的傅里叶变换只能提供信号的整体频谱信息,而无法捕捉非平稳信号在时间上的变化,因此,针对非平稳信号的分析与处理成为了信号处理领域一个至关重要的研究方向。短时傅里叶变换(Short-Time Fourier Transform,STFT)作为一种经典的时频分析方法,在分析和处理非平稳信号方面发挥着重要的作用。本文将深入探讨非平稳信号分析与处理的必要性,详细阐述STFT的原理及其在瞬时频率估计中的应用,并展望其未来的发展方向。
一、非平稳信号分析与处理的必要性
在现实生活中,我们遇到的信号绝大多数是非平稳的。经典的傅里叶变换假设信号是平稳的,即其统计特性不随时间变化。对于平稳信号,其频率成分在整个信号持续时间内保持不变,因此可以通过傅里叶变换将其分解为不同的频率成分,从而进行分析和处理。然而,对于非平稳信号,其频率成分随时间变化,传统的傅里叶变换无法提供足够的信息来描述信号的时变特性。
例如,语音信号就是典型的非平稳信号。在一段语音中,不同的音素具有不同的频率成分,而且这些频率成分会随着时间的推移而发生变化。如果仅使用傅里叶变换来分析语音信号,只能得到一个平均的频谱,无法区分不同音素的特征,也无法捕捉语音信号在时间上的变化。
因此,为了有效地分析和处理非平稳信号,需要采用能够提供时频信息的分析方法,例如STFT、小波变换、Wigner-Ville分布等。这些时频分析方法能够将信号分解成时间和频率的函数,从而揭示信号在时间和频率上的分布,为进一步的信号处理和应用提供基础。
二、短时傅里叶变换(STFT)的原理
STFT的基本思想是:将非平稳信号分成若干个短时片段,假设每个短时片段内的信号是近似平稳的,然后对每个短时片段进行傅里叶变换,从而得到信号在不同时间段内的频谱信息。
具体而言,STFT的数学表达式如下:
scss
STFT(t, f) = ∫[x(τ) * w(τ - t)] * exp(-j2πfτ) dτ
其中,
x(τ)
是原始信号;
w(τ - t)
是一个窗函数,它在时间
t
附近具有非零值,而在其他时间段内为零;t
是时间变量,表示窗函数中心的位置;
f
是频率变量;
j
是虚数单位。
STFT的过程可以理解为:将一个长度有限的窗函数 w(τ)
在时间轴上滑动,每次滑动到一个新的位置 t
,然后将窗函数与信号 x(τ)
相乘,得到一个被窗函数截断的短时信号 x(τ) * w(τ - t)
。最后,对这个短时信号进行傅里叶变换,得到该时间点 t
处的频谱信息 STFT(t, f)
。
通过将窗函数在时间轴上不断滑动,可以得到信号在不同时间点处的频谱信息,从而构成一个二维的时频图,也称为短时谱图 (Spectrogram)。时频图以时间为横轴,频率为纵轴,每个像素点的亮度或颜色表示该时间点和频率上的信号强度。
STFT的优点:
- 易于理解和实现:
STFT的原理简单直观,易于理解和实现。
- 适用于多种信号:
STFT可以应用于多种类型的非平稳信号,例如语音信号、图像信号等。
- 可以提供时频信息:
STFT可以同时提供信号在时间和频率上的分布信息。
STFT的缺点:
- 时频分辨率受限:
STFT的时频分辨率受到窗函数的限制,时间分辨率和频率分辨率之间存在一个折中关系。即,如果选择一个较短的窗函数,可以获得较好的时间分辨率,但频率分辨率会降低;如果选择一个较长的窗函数,可以获得较好的频率分辨率,但时间分辨率会降低。
- 对突变信号处理效果不佳:
对于包含突变成分的信号,STFT可能会产生模糊的时频表示。
三、STFT的瞬时频率研究
瞬时频率 (Instantaneous Frequency,IF) 是指信号在特定时间点的频率,它反映了信号在时间上的频率变化。对于非平稳信号,瞬时频率是一个随时间变化的函数,可以用于描述信号的频率演化规律。
STFT可以用于估计信号的瞬时频率。常用的方法包括:
- 峰值检测法:
在每个时间点
t
的频谱STFT(t, f)
中,找到幅度最大的频率f_max(t)
,并将该频率作为该时间点的瞬时频率。 - 相位差分法:
通过计算相邻两个时间点
t
和t+Δt
的 STFT 相位的差分,可以估计信号在t
到t+Δt
之间的平均瞬时频率。 - 基于脊线提取的瞬时频率估计:
在时频图中,信号能量集中的区域被称为脊线 (Ridge)。通过提取时频图中的脊线,可以得到信号的瞬时频率估计。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇