✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在全球气候变暖的严峻挑战下,构建清洁低碳、安全高效的能源体系已成为各国共识。化石燃料的过度依赖不仅带来了严重的环境污染问题,更对能源安全构成潜在威胁。在此背景下,可再生能源,如风能和太阳能,因其取之不尽、用之不竭的特性,正日益成为能源结构转型的重要支柱。然而,可再生能源的间歇性、波动性以及地域分布不均等特点,对其大规模接入电网并实现稳定可靠供电提出了严峻挑战。电网的惯性降低、调峰调频能力不足等问题愈发突出,亟需先进的储能技术加以支撑。
压缩空气储能(Compressed Air Energy Storage, CAES)作为一种成熟的大规模物理储能技术,因其容量大、寿命长、响应速度快、选址灵活等优势,在平抑新能源出力波动、提升电网稳定性、参与调峰调频等方面展现出巨大的潜力。传统的补燃式压缩空气储能系统,虽然技术成熟,但在放气过程中需要燃烧燃料加热压缩空气,从而产生碳排放,与零碳排放的能源发展目标相悖。非补燃压缩空气储能系统(Advanced CAES, A-CAES)则通过引入先进的储热/储冷技术,将压缩过程中产生的热量储存起来,并在膨胀过程中用于加热空气,实现了完全不依赖化石燃料的能量转换过程,从而成为实现零碳排放能源系统的重要技术路径。
本文旨在探讨非补燃压缩空气储能系统集成在零碳排放综合能源系统中的优化调度问题。通过深入分析非补燃CAES系统的特性及其在多能互补、源网荷储协调等方面的作用,构建考虑非补燃CAES系统运行特性和多能耦合关系的综合能源系统优化调度模型。该模型旨在实现系统运行成本最小化、可再生能源消纳最大化、碳排放最小化等多重目标,为构建面向零碳排放的未来能源系统提供理论支撑和技术指导。
一、非补燃压缩空气储能系统原理与优势
传统的补燃式CAES系统主要由压缩机、储气库、燃气轮机和发电机组成。压缩过程将电能转化为空气的内能,储存在高压储气库中;放气发电过程则将高压空气加热后驱动燃气轮机发电。补燃过程虽然提高了系统的效率,但也带来了碳排放问题。
非补燃CAES系统则引入了热储存装置,通常是显热或潜热储热系统。压缩过程中产生的热量被储存在储热装置中,放气膨胀前,空气经过储热装置被加热,无需额外燃烧燃料。根据热储存方式的不同,非补燃CAES系统又可分为绝热压缩空气储能(Adiabatic CAES, A-CAES)、等温压缩空气储能(Isothermal CAES, I-CAES)以及采用液化空气储能(Liquefied Air Energy Storage, LAES)等多种技术路线。其中,绝热CAES技术相对成熟,其核心在于高效的热量回收与储存技术。
非补燃CAES系统相较于传统CAES系统的主要优势体现在:
- 零碳排放:
整个能量转换过程不依赖化石燃料,完全实现零碳排放,与零碳能源发展方向高度契合。
- 效率提升:
通过热量回收与利用,可以显著提高系统的循环效率。传统补燃CAES效率通常在40%-50%,而非补燃CAES理论效率可达70%以上。
- 环境友好:
除了零碳排放,非补燃CAES系统不产生其他污染物排放,对环境影响小。
- 多功能性:
除能量储存外,非补燃CAES系统还具备调峰、调频、备用等多种功能,可以提升电网的灵活性和可靠性。
然而,非补燃CAES系统也面临一些技术挑战,例如高效低成本的热储存技术、大容量高压储气库的建设成本、系统集成与控制的复杂性等,这些都需要在实际应用中不断探索和完善。
二、零碳排放综合能源系统概述与非补燃CAES的作用
零碳排放综合能源系统(Zero-Carbon Integrated Energy System, ZC-IES)是指以可再生能源为主体,通过多种能源形式(如电、热、冷、氢等)的互联互通和协同优化,实现系统运行过程中温室气体净排放为零的能源系统。ZC-IES的核心在于能源的多元化、互补性、智能化以及清洁化。
在ZC-IES中,非补燃CAES系统扮演着至关重要的角色,主要体现在以下几个方面:
- 可再生能源消纳:
非补燃CAES系统可以将间歇性可再生能源(如风电、光伏)富余电力储存起来,在需求高峰时释放,有效平抑可再生能源出力波动,提高可再生能源的消纳比例,减少弃风弃光。
- 系统调峰调频:
非补燃CAES系统具有快速的响应速度和灵活的运行模式,可以作为电网的优质调峰和调频资源,增强电网的稳定性,提高系统的鲁棒性。
- 多能耦合与转换:
非补燃CAES系统可以与其他能源形式进行耦合,例如与热力系统相结合,利用压缩过程中产生的热量供热,实现电-热耦合。与氢能系统结合,利用多余电力制氢,再将氢气储存或用于其他用途,实现电-氢耦合。这种多能耦合有助于提高系统整体效率和灵活性。
- 提升系统弹性:
在极端天气或突发事件下,非补燃CAES系统可以作为可靠的备用电源,为系统提供持续稳定的能源供应,提升系统的韧性。
- 促进能源互联网发展:
非补燃CAES系统作为大规模储能节点,可以连接发电侧、电网侧和用户侧,促进能源流、信息流和价值流的融合,推动能源互联网的建设与发展。
构建ZC-IES并非易事,需要充分考虑各种能源技术的特性、相互之间的耦合关系、能源市场的机制以及政策法规的引导。非补燃CAES作为一种关键的灵活性资源,其合理的规划和优化调度对于ZC-IES的顺利建设和高效运行至关重要。
三、非补燃压缩空气储能系统集成在ZC-IES中的优化调度模型构建
为了实现非补燃CAES系统在ZC-IES中的最优运行,需要构建相应的优化调度模型。该模型应充分考虑ZC-IES中各类能源设备的运行特性、能源耦合关系、电网运行约束以及环境效益目标。
3.1 模型目标
零碳排放综合能源系统的优化调度目标通常是多目标的,主要包括:
- 经济性目标:
最小化系统的总运行成本,包括能源采购成本、设备运行维护成本、设备启停成本等。
- 环境性目标:
最小化系统的碳排放量(在理想零碳系统中为零排放),最大化可再生能源消纳。
- 可靠性目标:
保证系统的供电可靠性,满足用户侧的能源需求。
在本文探讨的零碳排放系统中,环境性目标是核心,因此可以将其转化为约束条件,例如要求系统的净碳排放为零。主要优化目标则可以是最小化系统的经济成本。
3.2 系统构成与设备模型
典型的集成非补燃CAES的ZC-IES系统可能包含以下主要设备:
- 可再生能源发电单元:
风力发电机、光伏发电设备等。
- 常规发电设备:
在完全零碳系统中,常规化石燃料发电设备将被逐步替代,可能包含生物质发电、核电等低碳或无碳发电设备,但在过渡期内也可能考虑燃气轮机等作为备用或调峰机组(需考虑碳捕集与封存技术)。
- 非补燃压缩空气储能系统:
包括压缩机、储气库、膨胀机、发电机以及热储存装置等。其模型应体现压缩过程的电能消耗、放气过程的电能输出、储气状态的变化以及热储存装置的充放热特性。
- 其他储能系统:
如电池储能系统、抽水蓄能等,作为补充的灵活性资源。
- 需求侧负荷:
包括电力负荷、热负荷、冷负荷等。
- 能源转换设备:
如电锅炉、热泵、制冷机等。
- 能源网络:
电力网络、热力网络等。
设备模型应充分考虑其容量约束、效率特性、启停特性、爬坡速率等运行约束。特别是对于非补燃CAES系统,需要建立详细的模型来描述压缩机和膨胀机的功率与效率关系、储气库的压力与储能量关系、热储存装置的储热/放热特性等。
3.3 约束条件
优化调度模型需要考虑各种约束条件,以确保系统运行的可行性和稳定性:
- 功率平衡约束:
系统的发电总量、储能系统的充放电功率、负荷需求等之间的平衡。
- 储能系统约束:
储能容量限制、充放电功率限制、储能状态的变化方程等。非补燃CAES系统还需要考虑储气库的压力约束、热储存装置的温度约束等。
- 设备运行约束:
发电设备的容量约束、启停约束、爬坡速率约束等。
- 电网运行约束:
线路潮流约束、节点电压约束等(在考虑电网详细运行的情况下)。
- 能源耦合约束:
不同能源形式之间的转换效率和容量限制。
- 零碳排放约束:
系统在整个调度周期内的净碳排放量必须为零。这可以通过限制含碳设备的运行小时数或引入碳交易成本等方式来实现。
3.4 优化模型构建
基于上述目标和约束,可以构建一个数学优化模型。考虑到ZC-IES中设备的多样性、运行特性的非线性和离散性,该模型通常是一个混合整数线性规划(Mixed Integer Linear Programming, MILP)或非线性规划(Nonlinear Programming, NLP)问题。对于大规模系统,可能需要采用分解协调算法或启发式算法进行求解。
3.5 求解方法
对于构建的优化模型,可以采用不同的求解方法。对于线性或混合整数线性规划模型,可以使用商业或开源的优化求解器(如Gurobi, CPLEX, SCIP)进行求解。对于非线性模型,可以采用内点法、序列二次规划法等。对于大规模复杂系统,可能需要结合启发式算法、分解协调算法等进行求解,以提高计算效率。
四、非补燃压缩空气储能系统优化调度的关键挑战与未来展望
将非补燃CAES系统集成到ZC-IES中并进行优化调度面临诸多挑战:
- 非补燃CAES系统模型精度:
精确描述非补燃CAES系统的动态特性,特别是热储存过程和热电耦合关系,对于优化结果至关重要。热储存装置的非线性特性、温度对效率的影响等需要更精细的模型。
- 多能源耦合建模:
ZC-IES中多种能源形式的互联互通和相互作用增加了建模的复杂性。如何准确描述电、热、冷、氢等能源之间的转换和传输关系,以及它们与非补燃CAES系统的耦合,是模型构建的关键。
- 可再生能源不确定性:
风电、光伏等可再生能源出力的随机性和波动性对优化调度带来了挑战。需要采用鲁棒优化、随机优化等方法来应对不确定性,提高调度的可靠性。
- 大规模系统计算效率:
随着ZC-IES规模的扩大,设备数量和约束条件的增加,导致优化模型的维度急剧增加,求解的计算复杂度很高。需要开发高效的求解算法来满足实际调度需求。
- 市场机制与政策引导:
现有的能源市场机制可能尚未完全适应高比例可再生能源和大规模储能系统的接入。需要探索和建立新的市场机制,例如容量市场、辅助服务市场等,以激励非补燃CAES系统等灵活性资源的投资和运行。政策层面也需要提供支持,如投资补贴、电价优惠等,以促进非补燃CAES技术的推广应用。
- 多时间尺度协调调度:
能源系统的运行需要考虑不同时间尺度的调度,包括日前调度、日内调度、实时调度等。如何实现非补燃CAES系统在不同时间尺度上的协调优化,以应对实时负荷变化和可再生能源波动,是一个需要深入研究的问题。
未来展望:
尽管面临挑战,非补燃CAES系统在零碳排放能源系统中的前景依然广阔。未来的研究和发展方向主要包括:
- 非补燃CAES技术创新:
进一步提升非补燃CAES系统的效率、降低成本,特别是开发高效低成本的热储存材料和技术,提高系统的能量密度和循环寿命。
- 先进的优化调度算法:
研发更先进、更高效的优化调度算法,能够处理大规模、非线性、不确定性强的ZC-IES模型,实现多目标协同优化。
- 考虑网络约束的优化调度:
在优化调度中更精细地考虑电力网络和热力网络的运行约束,避免出现潮流阻塞或电压越限等问题。
- 基于人工智能和大数据技术的调度:
利用人工智能和大数据技术对能源系统运行数据进行分析和预测,提高调度决策的智能化水平。
- 非补燃CAES系统与其他能源技术的深度融合:
探索非补燃CAES系统与氢能、CCUS(碳捕集利用与封存)等其他零碳技术的深度融合,构建更加协同高效的未来能源系统。
- 政策和市场机制的完善:
积极推动能源市场和政策机制的改革,为非补燃CAES等新型储能技术的商业化应用提供有利环境。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类