- 博客(442)
- 资源 (7768)
- 收藏
- 关注
原创 NRBO-GMM牛顿-拉夫逊优化算法优化高斯混合聚类优化算法(Matlab)
高斯混合模型 (Gaussian Mixture Model, GMM) 是一种强大的概率聚类算法,它假设数据点是由若干个服从高斯分布的潜在成分混合而成。GMM 的目标是估计每个高斯成分的参数(均值、方差/协方差以及混合系数),从而将数据点分配到最可能的成分类别中。传统的 GMM 训练通常采用期望最大化 (Expectation-Maximization, EM) 算法,但 EM 算法对初始参数敏感,容易陷入局部最优解,且收敛速度相对较慢。
2025-03-29 08:56:15
958
原创 IPOA-FCM数据聚类算法,基于改进的鹈鹕优化算法(IPOA)优化FCM模糊C均值聚类优化
模糊C均值(FCM)聚类算法是一种广泛应用的无监督学习方法,然而,其性能高度依赖于初始聚类中心的选取,容易陷入局部最优解,导致聚类结果不理想。本文提出一种基于改进鹈鹕优化算法(IPOA)优化FCM的聚类算法,即IPOA-FCM。该算法利用IPOA强大的全局搜索能力和快速收敛能力,有效地克服了FCM算法的局限性。IPOA算法通过引入新的捕食策略和自适应调整机制,增强了其全局探索能力和局部开发能力。
2025-03-29 08:51:51
866
原创 回归预测 | Matlab实现SMA-ESN黏菌算法优化回声状态网络多输入单输出回归预测
回声状态网络(Echo State Network, ESN)作为一种新型的循环神经网络,因其训练简单、计算效率高等优点,在时间序列预测和非线性系统建模等领域得到了广泛应用。然而,ESN的性能很大程度上依赖于其内部参数的设定。为了解决传统ESN参数优化过程中存在的易陷入局部最优、收敛速度慢等问题,本文提出一种基于黏菌算法(Slime Mould Algorithm, SMA)优化ESN的回声状态网络,用于多输入单输出回归预测。
2025-03-29 08:48:06
586
原创 LSSVM最小二乘支持向量机多变量多步光伏功率预测(Matlab)
光伏发电作为一种清洁、可再生的能源,在全球能源转型中扮演着日益重要的角色。然而,光伏功率的间歇性和波动性给电网的安全稳定运行带来了挑战。因此,准确的光伏功率预测对于电力系统的调度、运行和控制至关重要。尤其是在高比例可再生能源并网的情况下,多步预测能力能够为电网运营商提供更长远的决策依据。本文旨在探讨基于最小二乘支持向量机(LSSVM)的多变量多步光伏功率预测方法,并分析其在光伏功率预测中的优势与应用。传统的光伏功率预测方法主要分为物理模型法、统计模型法和机器学习方法。
2025-03-29 08:46:17
893
原创 GA-Transformer遗传算法优化编码器多特征分类预测/故障诊断
编码器作为现代工业自动化中的关键元件,其性能直接影响着整个系统的稳定性和可靠性。因此,对其进行准确的多特征分类预测或故障诊断具有重要的现实意义。传统的分类预测方法往往依赖于人工特征工程,耗时耗力且难以捕捉复杂关系。近年来,深度学习技术在特征提取方面展现出强大的优势。针对编码器多特征分类预测或故障诊断问题,基于遗传算法优化的Transformer(GA-Transformer)模型提供了一种有效的解决方案。
2025-03-29 08:43:26
964
原创 【电力系统】基于主从博弈的综合能源服务商动态定价策略研究附Matlab代码
随着能源转型和电力市场改革的深入,综合能源服务商(Integrated Energy Service Provider, IESP)在推动能源效率提升、优化能源消费结构以及促进可再生能源消纳方面扮演着日益重要的角色。合理的定价策略是IESP实现盈利和吸引用户的关键。本文以电力系统为背景,深入研究了基于主从博弈的IESP动态定价策略。通过建立考虑用户侧需求响应和IESP运营成本的主从博弈模型,分析IESP作为领导者如何根据市场需求和竞争对手策略制定动态定价方案,从而实现自身利润最大化。
2025-03-28 10:53:39
563
原创 【电力】电力系统的虚假数据注入攻击和MTD系统研究附Matlab代码
电力系统作为国家关键基础设施,其安全稳定运行至关重要。随着电力系统智能化、网络化的不断深入,电力系统面临的网络安全威胁日益严峻。其中,虚假数据注入攻击 (False Data Injection Attack, FDIA) 由于其隐蔽性强、危害性大,已成为电力系统安全防御领域的研究热点。与此同时,移动目标防御(Moving Target Defense, MTD)作为一种主动防御策略,通过动态变化系统配置,增加攻击者攻击成本和难度,为防御FDIA提供了新的思路。
2025-03-28 10:51:46
956
原创 【任务分配】基于森林消防点模型的多基因动态任务分配附Matlab复现
森林火灾是威胁森林生态系统的重要自然灾害之一,快速有效的消防响应对于减少损失、保护生态环境至关重要。传统的消防任务分配方法往往基于经验或静态模型,难以应对复杂多变的火情,也难以充分利用现有的消防资源。因此,本文探讨基于森林消防点模型的多基因动态任务分配方法,旨在提高消防效率,降低火灾损失。一、森林消防点模型的构建与意义森林消防点模型是对现有消防资源和火情信息的抽象和建模,它将森林划分为若干个“消防点”,每个点可能包含消防队伍、消防车辆、水源地、以及火情信息等。
2025-03-28 10:47:09
1016
原创 【Transformer时序预测】基于CNN-Transformer实现光伏数据时序预测附matlab代码
光伏发电作为一种清洁、可再生的能源形式,在全球能源转型中扮演着日益重要的角色。然而,光伏发电的输出功率受到诸多因素影响,如光照强度、温度、天气条件等,呈现出高度的时序依赖性和非线性特征。准确的光伏数据时序预测对于电力系统的稳定运行、能源资源的优化调度以及光伏电站的经济效益提升至关重要。传统的时序预测方法,如自回归积分滑动平均(ARIMA)模型,在处理复杂、非线性的光伏数据时往往表现不佳。
2025-03-28 10:37:02
869
原创 【电力系统】针对KF状态估计的电力系统虚假数据注入攻击研究附Matlab代码
电力系统作为现代社会运行的基石,其安全稳定运行至关重要。状态估计是电力系统运行控制中的核心功能,它通过融合冗余的量测数据,为后续的运行决策提供可靠的系统状态信息。然而,随着电力系统信息化程度的不断提高,其也面临着日益严峻的网络安全威胁。虚假数据注入攻击 (False Data Injection Attack, FDIA) 作为一种隐蔽性强、破坏性大的网络攻击手段,近年来受到了广泛关注。
2025-03-28 10:22:22
990
原创 【路径规划】基于Dubins的无人机路径规划研究附Matlab代码
无人机(Unmanned Aerial Vehicle, UAV)作为一种新兴的智能化载体,凭借其灵活性高、成本低廉、适用性强等优势,在军事侦察、环境监测、物流运输、应急救援等领域得到日益广泛的应用。而路径规划作为无人机自主飞行的核心技术之一,直接影响着任务执行的效率、安全性及可靠性。无人机路径规划的目标是在满足各种约束条件的前提下,寻找一条从起点到终点的最优或近似最优路径,以完成特定的任务。Dubins曲线作为一种经典的曲率约束路径规划方法,在无人机路径规划领域展现出独特的优势和潜力。
2025-03-28 10:20:16
339
原创 【电力系统】计及N-k安全约束的含光热电站电力系统优化调度模型【IEEE14节点、118节点】附Matlab代码
随着全球能源危机的日益严峻和环境问题的日益突出,可再生能源正逐渐成为电力系统的重要组成部分。其中,光热电站(Concentrated Solar Power, CSP)凭借其储能能力和良好的调峰性能,在提高可再生能源的可靠性和稳定电力供应方面展现出巨大的潜力。然而,光热电站的运行特性,如间歇性、波动性和地域依赖性,也给电力系统的优化调度带来了新的挑战。另一方面,电力系统作为关键基础设施,其安全可靠运行至关重要。
2025-03-28 10:13:42
818
原创 【电力系统】基于雨流计数法的源-荷-储双层协同优化配置研究附Matlab代码
电力系统正面临着日益严峻的挑战,包括化石能源的日益枯竭、环境污染的日益严重以及电力需求的不断增长。因此,积极推进能源结构转型,大力发展可再生能源,构建以新能源为主体的新型电力系统已成为必然趋势。然而,可再生能源发电具有间歇性、波动性和不确定性等特点,对电力系统的稳定性和可靠性带来了新的挑战。储能系统作为一种重要的能量缓冲手段,能够有效平滑可再生能源发电的波动性,提高电力系统的灵活性和稳定性。同时,需求侧响应(需求侧管理)技术的发展也为电力系统的优化运行提供了新的思路和手段。
2025-03-28 10:11:19
564
原创 【电力系统】基于氢储能的热电联供型微电网优化调度方法附Matlab代码
随着全球能源危机和环境污染日益严重,构建清洁、高效、可靠的能源系统已成为全球共识。微电网作为分布式能源高效利用的重要形式,在提升能源利用效率、降低碳排放方面具有显著优势。然而,可再生能源的间歇性、波动性给微电网的稳定运行带来了挑战。为了克服这些挑战,储能技术的引入至关重要。氢储能作为一种新兴的储能方式,具有能量密度高、可长期储存、零污染等优点,为热电联供型微电网的优化调度提供了新的思路。本文将深入探讨基于氢储能的热电联供型微电网优化调度方法,分析其关键技术、面临的挑战以及未来的发展方向。
2025-03-28 09:36:27
1003
原创 【电力系统】基于双层共识控制的直流微电网优化调度附Matlab代码
直流微电网作为未来智能电网的重要组成部分,因其能源转换效率高、易于接入可再生能源、控制灵活性强等优点而备受关注。然而,直流微电网的稳定运行和高效调度面临着诸多挑战,例如:分布式电源的间歇性与波动性、负荷的随机变化、能量管理系统的信息交互延迟以及不同分布式电源之间缺乏有效的协同机制等。传统的集中式调度方式,虽然优化效果较好,但存在通信负担重、单点故障风险高、难以满足微电网的即插即用需求等问题。分布式控制方法则在鲁棒性、灵活性和可扩展性方面具有优势,但往往难以保证全局最优。
2025-03-28 09:34:18
1026
原创 【机械】基于MATLAB的板线性与非线性弯曲有限元分析
本文探讨了基于MATLAB平台对板结构进行线性与非线性弯曲有限元分析的方法。有限元法作为一种强大的数值分析工具,被广泛应用于工程领域,尤其是在复杂结构力学分析中。本文首先介绍了板弯曲问题的基本理论,包括Kirchhoff薄板理论和Reissner-Mindlin厚板理论。随后,详细阐述了基于MATLAB进行有限元离散化、刚度矩阵组装、边界条件施加以及求解过程的具体步骤。重点讨论了线性与非线性有限元分析的区别,以及非线性分析中几何非线性问题的处理方法,包括Lagrange描述和更新的Lagrange描述。
2025-03-28 09:32:14
809
原创 【裂缝识别】根据椭圆长轴方向和Bresenham线遍历计算裂缝宽度附matlab代码
裂缝是工程结构中常见的一种损伤形式,其宽度是评估结构安全性和耐久性的重要指标。本文提出一种基于椭圆长轴方向和Bresenham线遍历的裂缝宽度识别算法。该算法首先通过图像处理技术提取裂缝边缘,并拟合椭圆以确定裂缝的主体方向。然后,沿椭圆长轴方向,利用Bresenham算法生成一系列线段,遍历裂缝区域。通过计算每条线段与裂缝边缘的交点距离,并统计分析这些距离,可以有效评估裂缝的平均宽度和最大宽度。本文详细阐述了该算法的理论基础和实现步骤,并通过实验验证了其在裂缝宽度识别方面的准确性和鲁棒性。
2025-03-28 09:26:00
565
原创 【雷达】电子战发射机检测和地理定位的MATLAB代码
雷达在现代战争中扮演着至关重要的角色,从目标探测、跟踪到武器制导,无处不在。然而,雷达的广泛应用也使其成为电子战(Electronic Warfare, EW)的重点攻击目标。敌方电子战发射机(Electronic Warfare Emitter, EWE)通过干扰、欺骗甚至摧毁雷达系统,从而削弱甚至瘫痪其作战能力。因此,快速、准确地检测和地理定位敌方EWE,是维护己方雷达系统安全、保障战场主动权的关键。本文将深入探讨雷达电子战发射机检测与地理定位领域所面临的挑战与机遇,并阐述未来发展的趋势。
2025-03-28 09:23:55
796
原创 【无人机】基于鲁棒非线性控制和风建模的多旋翼无人机软着陆附matlab代码
多旋翼无人机凭借其灵活性和垂直起降能力,在各个领域得到了广泛应用。然而,在复杂的环境条件下,特别是存在风干扰的情况下,实现安全、平稳的软着陆仍然是一个极具挑战性的问题。本文探讨了基于鲁棒非线性控制和风建模的多旋翼无人机软着陆方法,旨在提高无人机在存在风干扰时的着陆精度和稳定性。首先,我们分析了多旋翼无人机的动力学模型,并引入了风力模型来描述风干扰对无人机运动的影响。
2025-03-28 09:19:30
651
原创 【无人机】基于鲁棒非线性控制和风建模的多旋翼无人机软着陆附matlab代码
多旋翼无人机凭借其灵活性和垂直起降能力,在各个领域得到了广泛应用。然而,在复杂的环境条件下,特别是存在风干扰的情况下,实现安全、平稳的软着陆仍然是一个极具挑战性的问题。本文探讨了基于鲁棒非线性控制和风建模的多旋翼无人机软着陆方法,旨在提高无人机在存在风干扰时的着陆精度和稳定性。首先,我们分析了多旋翼无人机的动力学模型,并引入了风力模型来描述风干扰对无人机运动的影响。
2025-03-28 09:18:46
790
原创 Matlab同步提取变换Synchroextracted transform一维数据转二维图像方法
同步提取变换 (Synchroextracted Transform, SET) 是一种强大的时频分析技术,其核心优势在于能够将一维的时间序列数据转化为高分辨率的二维时频图像。相比于传统的时频分析方法,如短时傅里叶变换 (Short-Time Fourier Transform, STFT) 和连续小波变换 (Continuous Wavelet Transform, CWT),SET 能够显著提高时频表示的清晰度和准确性,使其在信号处理、机械故障诊断、生物医学信号分析等多个领域得到了广泛应用。
2025-03-27 16:05:21
358
原创 基于SSA-BP麻雀搜索算法优化神经网络+NSGAII多目标优化算法的工艺参数优化、工程设计优化!
现代工程设计和工艺参数优化日益复杂,往往涉及多个相互冲突的目标。传统优化方法难以有效处理此类问题,因此需要开发更加先进的优化策略。本文将探讨一种结合麻雀搜索算法(SSA)优化的反向传播神经网络(BP神经网络)以及非支配排序遗传算法II(NSGA-II)的多目标优化方法,并分析其在工艺参数和工程设计优化中的应用。一、引言:工艺参数和工程设计优化的挑战工艺参数优化和工程设计优化是工程实践中至关重要的环节。合理的参数选择和精巧的设计方案,直接影响着产品的性能、成本、可靠性和环保性。
2025-03-27 16:00:08
674
原创 机器人路径规划 | 基于极光PLO优化算法的机器人三维路径规划Matlab代码
机器人路径规划是机器人领域的核心问题之一,它涉及在复杂环境中为机器人寻找一条安全、高效的运动轨迹。随着工业自动化、物流、以及探索未知环境等领域的快速发展,对高效可靠的机器人路径规划算法的需求日益迫切。传统路径规划算法,如A*算法、Dijkstra算法等,在低维空间和静态环境下表现良好,但在高维空间和动态环境中往往面临“维度诅咒”和计算效率低下的问题。为了应对这些挑战,研究人员不断探索新型优化算法,并将其应用于机器人路径规划领域。
2025-03-27 15:55:08
398
原创 分类预测 | Matlab实现基于IDBO-GRU改进蜣螂算法优化门控循环单元多特征分类预测/故障诊断
近年来,工业设备复杂程度日益提高,故障诊断与预测对于保障生产安全、提高设备利用率、降低维护成本至关重要。传统故障诊断方法依赖于人工经验,效率低、易出错。随着人工智能技术的快速发展,基于数据驱动的故障诊断方法成为研究热点。其中,循环神经网络(RNN)及其变体,如门控循环单元(GRU),凭借其强大的时序数据处理能力,在故障诊断与预测领域展现出巨大潜力。然而,GRU的性能高度依赖于超参数的选择,人工调参效率低下且容易陷入局部最优。因此,寻找一种高效的超参数优化方法成为提升GRU模型性能的关键。
2025-03-27 15:53:02
275
原创 Matlab实现POA-BP鹈鹕算法优化BP神经网络多输入多输出预测
BP神经网络(Back Propagation Neural Network)作为一种成熟的机器学习算法,凭借其强大的非线性映射能力,在预测领域得到了广泛的应用。然而,传统的BP神经网络存在一些固有的缺陷,例如容易陷入局部最优解、收敛速度慢、对初始权重敏感等问题。为了克服这些缺陷,人们不断寻求优化算法来提高BP神经网络的性能。鹈鹕优化算法(Pelican Optimization Algorithm, POA)作为一种新兴的群体智能优化算法,具有全局搜索能力强、收敛速度快等优点。
2025-03-27 15:49:23
369
原创 BO-CNN贝叶斯算法优化卷积神经网络时间序列预测
时间序列预测在金融、气象、交通等诸多领域扮演着至关重要的角色。卷积神经网络(Convolutional Neural Networks, CNNs)凭借其强大的特征提取能力,在处理时间序列数据方面展现出独特的优势。然而,传统CNN模型依赖于人工经验进行参数调优,效率低下且容易陷入局部最优解。为了解决这一问题,将贝叶斯优化(Bayesian Optimization, BO)算法引入CNN的优化过程,构建基于BO-CNN的贝叶斯算法优化卷积神经网络时间序列预测模型,成为一个极具前景的研究方向。
2025-03-27 15:47:38
463
原创 MATLAB实现CNN-SVM多输入单输出回归预测
回归预测在诸多领域都扮演着至关重要的角色,例如金融市场预测、能源消耗预测、环境污染预测等。随着数据规模的日益增长和复杂性的不断提高,传统的回归模型往往难以捕捉数据中的非线性关系和复杂特征,导致预测精度下降。近年来,深度学习模型凭借其强大的特征提取能力和非线性拟合能力,在回归预测领域取得了显著成果。其中,卷积神经网络(CNN)作为一种擅长处理图像数据的深度学习模型,在提取局部特征方面具有优势。而支持向量机(SVM)作为一种经典的机器学习算法,在高维数据中具有良好的泛化能力和鲁棒性。
2025-03-27 15:40:10
925
原创 回归预测 | Matlab实现PSO-HKELM粒子群算法优化混合核极限学习机多变量回归预测
近年来,随着数据采集技术的飞速发展和计算能力的不断提升,多变量回归预测在诸多领域扮演着越来越重要的角色。例如,在金融领域,可以利用历史数据预测股票价格走势;在气象领域,可以根据气象数据预测未来天气变化;在工业领域,可以根据生产数据预测设备故障率。然而,传统的多变量回归预测方法在处理复杂非线性关系时往往表现不足,容易陷入局部最优解,导致预测精度不高。因此,开发高效且准确的多变量回归预测模型具有重要的理论意义和应用价值。
2025-03-27 15:37:44
294
原创 Matlab实现基于VMD-DBO-LSTM、VMD-LSTM、LSTM的多变量时间序列预测
在当今信息爆炸的时代,时间序列数据无处不在,从金融市场的股票价格波动到工业生产线的传感器数据,都蕴含着重要的信息和趋势。多变量时间序列预测作为一种关键的数据分析技术,旨在利用多个相关变量的历史数据,预测未来一段时间内的走势,在经济预测、能源管理、环境监测等领域发挥着越来越重要的作用。
2025-03-27 11:45:31
245
原创 基于MATLAB的深度学习SqueezeNet卷积神经网络混凝土裂纹图像识别预测模型
混凝土作为现代土木工程领域最广泛使用的建筑材料,其结构安全直接关系到建筑物乃至整个社会的安全与稳定。裂纹作为混凝土结构中最常见的缺陷形式,往往预示着材料内部存在潜在的损伤或承载能力下降。及时准确地检测和识别混凝土裂纹,对于保障工程结构的长期服役性能、减少维护成本和防止安全事故至关重要。传统的人工检测方法效率低、成本高,且易受人为因素的影响,难以满足大规模工程的需求。
2025-03-27 11:37:13
900
原创 分类预测 | Matlab实现基于Transformer-BiGRU-KELM多特征分类预测/故障诊断
在当今工业智能化的大潮下,设备健康状态的精确诊断与未来趋势的准确预测显得尤为重要。传统的基于单一特征或浅层模型的故障诊断和预测方法已经难以满足复杂工业系统日益增长的需求。为了更有效地利用设备运行过程中产生的大量多元时序数据,并提取深层次的特征,本文将探讨一种基于Transformer-BiGRU-KELM的多特征融合分类预测/故障诊断模型。该模型旨在结合Transformer强大的全局信息捕捉能力、BiGRU对时序特征的双向依赖建模能力以及KELM算法高效的分类预测性能,从而提升诊断的准确性和预测的可靠性。
2025-03-27 11:32:36
637
原创 LSTM-SVM故障诊断 | 基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现
故障诊断作为工业领域的重要课题,其目标在于尽早发现设备运行中的潜在问题,从而避免事故发生、降低维修成本、保障生产效率。传统的故障诊断方法往往依赖于人工经验和特定领域的知识,存在自动化程度低、泛化能力弱等问题。近年来,随着人工智能技术的快速发展,基于机器学习的故障诊断方法逐渐成为研究热点。其中,循环神经网络(RNN)及其变体长短期记忆网络(LSTM)在处理时间序列数据方面表现出色,而支持向量机(SVM)则以其良好的泛化能力和鲁棒性著称。
2025-03-27 11:19:27
651
原创 分类预测 | Matlab实现基于NRBO-BiLSTM-Attention多特征分类预测/故障诊断
分类预测和故障诊断在诸多工程领域扮演着至关重要的角色,它们能够帮助人们提前识别潜在的问题,降低维护成本,提高系统的可靠性和安全性。随着数据采集技术的进步,越来越多的传感器被部署在各类设备和系统中,使得我们能够获取大量的多维时序数据。如何有效地利用这些数据,提取关键特征,构建高性能的分类预测/故障诊断模型,成为了一个重要的研究课题。
2025-03-27 11:13:33
907
原创 ALO-RF基于蚁狮算法优化随机森林的数据多变量回归预测 Matlab代码
在数据科学和工程领域,多变量回归预测是一种常见的且至关重要的技术。它旨在建立多个自变量与多个因变量之间的复杂关系模型,从而实现对未来数据的准确预测。然而,面对高维度、非线性以及复杂相关性的数据,传统的回归方法往往表现出局限性。因此,如何构建高效、鲁棒且准确的多变量回归预测模型,一直是研究的热点。随机森林 (Random Forest, RF) 作为一种集成学习算法,以其出色的泛化能力、高准确性和对高维数据的适应性而备受青睐。它通过构建多个决策树并集成它们的预测结果来降低过拟合风险,并提高预测精度。
2025-03-27 11:10:53
238
原创 分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现
多特征分类预测在诸多领域扮演着关键角色,其准确性直接影响决策的质量。最小二乘支持向量机 (Least Squares Support Vector Machine, LSSVM) 作为一种有效的分类器,具有计算效率高、全局最优等优点,但也存在参数选择困难的问题。传统的参数优化方法往往耗时且容易陷入局部最优。针对LSSVM参数优化难题,飞蛾扑火算法 (Moth-Flame Optimization, MFO) 作为一种新兴的群体智能优化算法,具备收敛速度快、寻优能力强的特点。
2025-03-27 11:02:51
806
原创 【电力系统】考虑微网新能源经济消纳的共享储能优化配置附Matlab代码
电力系统的发展面临着日益严峻的挑战,一方面是对日益增长的能源需求的满足,另一方面是对环境保护和可持续发展的迫切需要。新能源发电,例如太阳能和风能,因其清洁、可再生等特性,被认为是未来能源发展的重要方向。然而,新能源发电的间歇性和波动性给电力系统的稳定运行带来了新的挑战。微网作为一种灵活可控的分布式能源系统,能够有效地接入和消纳新能源。为了进一步提升微网的新能源消纳能力,降低运行成本,并提高电网的整体效益,共享储能的概念应运而生。本文将探讨考虑微网新能源经济消纳的共享储能优化配置问题。
2025-03-26 12:03:39
811
原创 【信号处理】改进最大相关峰度反卷积方法在滚动体轴承故障诊断中的应用附Matlab代码
滚动体轴承作为旋转机械的关键组成部分,其健康状况直接影响着设备的稳定运行和生产效率。一旦轴承发生故障,若未能及时诊断和维修,可能导致设备停机、生产中断,甚至造成安全事故。因此,开发高效准确的滚动体轴承故障诊断方法具有重要的理论意义和实际应用价值。近年来,随着信号处理技术的发展,基于振动信号分析的故障诊断方法得到了广泛应用。其中,反卷积技术因其能够从复杂的振动信号中提取故障特征,受到了越来越多的关注。
2025-03-26 11:42:16
576
原创 【永磁直线同步发电机的建模与设计分析】分析起伏浮标波浪能转换器的取力器性能研究附Matlab代码
波浪能作为一种蕴藏丰富的可再生能源,正日益受到全球的重视。起伏浮标波浪能转换器(Point Absorber Wave Energy Converter, PA-WEC)以其结构简单、适用性广等优点,成为最具发展潜力的波浪能捕获装置之一。而永磁直线同步发电机(Permanent Magnet Linear Synchronous Generator, PMLSM)由于其直接驱动、无需中间变速箱、高效率等优势,被广泛应用于PA-WEC的取力器(Power Take-Off, PTO)设计。
2025-03-26 11:38:26
1022
原创 【可重构智能表面(RIS)】在RIS辅助MISO窃听信道下的统计QoS保障下的保密速率研究附Python代码
可重构智能表面(Reconfigurable Intelligent Surface, RIS)作为一种新型的无线通信技术,近年来受到了学术界和工业界的广泛关注。RIS 凭借其低成本、低功耗、易部署的特点,能够智能地调控无线信道,为提高通信系统的性能提供了一种极具潜力的方法。本文将深入探讨 RIS 在多输入单输出(Multiple-Input Single-Output, MISO)窃听信道下的应用,重点研究在统计服务质量(Quality of Service, QoS)保障下,如何最大化保密速率。
2025-03-26 11:34:21
894
原创 【遗传算法(GA)和模拟退火(SA)对翼型升阻比进行优化】基于神经网络和无导数算法的翼型优化附Matlab代码
翼型作为飞行器的关键组成部分,其气动性能直接影响飞行器的整体效率和安全性。优化翼型设计,提升其升阻比(升力系数与阻力系数之比)具有重要的工程意义。传统的翼型优化方法,如直接气动仿真和梯度优化算法,往往计算量巨大,耗时漫长。近年来,结合神经网络(Neural Network, NN)的无导数算法(Derivative-Free Optimization, DFO)在翼型优化领域展现出强大的潜力,能在保证精度的前提下显著降低计算成本。
2025-03-26 11:32:38
933
2003 B M Optimization of Radiosurgery Treatmen
2025-01-22
1997 B J Judge’s Commentary The Outstanding Discussion Groups
2025-01-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人