MobileNet实战:tensorflow2(2)

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

│ ├─Scentless Mayweed

│ ├─Shepherds Purse

│ ├─Small-flowered Cranesbill

│ └─Sugar beet

├─train.py

├─test1.py

└─test.py

训练

=================================================================

1、Mixup


mixup是一种非常规的数据增强方法,一个和数据无关的简单数据增强原则,其以线性插值的方式来构建新的训练样本和标签。最终对标签的处理如下公式所示,这很简单但对于增强策略来说又很不一般。

img

( x i , y i ) \left ( x_{i},y_{i} \right ) (xi​,yi​), ( x j , y j ) \left ( x_{j},y_{j} \right ) (xj​,yj​)两个数据对是原始数据集中的训练样本对(训练样本和其对应的标签)。其中 λ \lambda λ是一个服从B分布的参数, λ ∼ B e t a ( α , α ) \lambda\sim Beta\left ( \alpha ,\alpha \right ) λ∼Beta(α,α) 。Beta分布的概率密度函数如下图所示,其中 α ∈ [ 0 , + ∞ ] \alpha \in \left [ 0,+\infty \right ] α∈[0,+∞]

img

因此 α \alpha α是一个超参数,随着 α \alpha α的增大,网络的训练误差就会增加,而其泛化能力会随之增强。而当 α → ∞ \alpha \rightarrow \infty α→∞时,模型就会退化成最原始的训练策略。参考:https://www.jianshu.com/p/d22fcd86f36d

新建mixupgenerator.py,插入一下代码:

import numpy as np

class MixupGenerator():

def init(self, X_train, y_train, batch_size=32, alpha=0.2, shuffle=True, datagen=None):

self.X_train = X_train

self.y_train = y_train

self.batch_size = batch_size

self.alpha = alpha

self.shuffle = shuffle

self.sample_num = len(X_train)

self.datagen = datagen

def call(self):

while True:

indexes = self.__get_exploration_order()

itr_num = int(len(indexes) // (self.batch_size * 2))

for i in range(itr_num):

batch_ids = indexes[i * self.batch_size * 2:(i + 1) * self.batch_size * 2]

X, y = self.__data_generation(batch_ids)

yield X, y

def __get_exploration_order(self):

indexes = np.arange(self.sample_num)

if self.shuffle:

np.random.shuffle(indexes)

return indexes

def __data_generation(self, batch_ids):

_, h, w, c = self.X_train.shape

l = np.random.beta(self.alpha, self.alpha, self.batch_size)

X_l = l.reshape(self.batch_size, 1, 1, 1)

y_l = l.reshape(self.batch_size, 1)

X1 = self.X_train[batch_ids[:self.batch_size]]

X2 = self.X_train[batch_ids[self.batch_size:]]

X = X1 * X_l + X2 * (1 - X_l)

if self.datagen:

for i in range(self.batch_size):

X[i] = self.datagen.random_transform(X[i])

X[i] = self.datagen.standardize(X[i])

if isinstance(self.y_train, list):

y = []

for y_train_ in self.y_train:

y1 = y_train_[batch_ids[:self.batch_size]]

y2 = y_train_[batch_ids[self.batch_size:]]

y.append(y1 * y_l + y2 * (1 - y_l))

else:

y1 = self.y_train[batch_ids[:self.batch_size]]

y2 = self.y_train[batch_ids[self.batch_size:]]

y = y1 * y_l + y2 * (1 - y_l)

return X, y

2、 导入需要的数据包,设置全局参数


import numpy as np

from tensorflow.keras.optimizers import Adam

import cv2

from tensorflow.keras.preprocessing.image import img_to_array

from sklearn.model_selection import train_test_split

from tensorflow.python.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau

from tensorflow.keras.applications import MobileNetV2

import os

from tensorflow.python.keras.utils import np_utils

from tensorflow.python.keras.layers import Dense

from tensorflow.python.keras.models import Sequential

from mixupgenerator import MixupGenerator

norm_size = 224

datapath = ‘data/train’

EPOCHS = 20

INIT_LR = 1e-3

labelList = []

dicClass = {‘Black-grass’: 0, ‘Charlock’: 1, ‘Cleavers’: 2, ‘Common Chickweed’: 3, ‘Common wheat’: 4, ‘Fat Hen’: 5, ‘Loose Silky-bent’: 6,

‘Maize’: 7, ‘Scentless Mayweed’: 8, ‘Shepherds Purse’: 9, ‘Small-flowered Cranesbill’: 10, ‘Sugar beet’: 11}

classnum = 12

batch_size = 16

这里可以看出tensorflow2.0以上的版本集成了Keras,我们在使用的时候就不必单独安装Keras了,以前的代码升级到tensorflow2.0以上的版本将keras前面加上tensorflow即可。

tensorflow说完了,再说明一下几个重要的全局参数:

  • norm_size = 224 ,MobileNetV2默认的图片尺寸是224×224。

  • datapath = ‘data/train’, 设置图片存放的路径,在这里要说明一下如果图片很多,一定不要放在工程目录下,否则Pycharm加载工程的时候会浏览所有的图片,很慢很慢。

  • EPOCHS = 100, epochs的数量,关于epoch的设置多少合适,这个问题很纠结,一般情况设置300足够了,如果感觉没有训练好,再载入模型训练。

  • INIT_LR = 1e-3 ,学习率,一般情况从0.001开始逐渐降低,也别太小了到1e-6就可以了。

  • classnum = 12, 类别数量,数据集有12个类别,所有就定义12类。

  • batch_size = 16,batchsize,根据硬件的情况和数据集的大小设置,太小了loss浮动太大,太大了收敛不好,根据经验来,一般设置为2的次方。windows可以通过任务管理器查看显存的占用情况。

image-20220126135414054

Ubuntu可以使用nvidia-smi查看显存的占用。

image-20220120064407104

3、 加载图片


处理图像的步骤:

  1. 读取图像

  2. 用指定的大小去resize图像。

  3. 将图像转为数组

  4. 图像归一化

  5. 使用np_utils.to_categorical方法将标签转为onehot编码

具体做法详见代码:

def loadImageData():

imageList = []

listClasses = os.listdir(datapath)# 类别文件夹

print(listClasses)

for class_name in listClasses:

label_id = dicClass[class_name]

class_path=os.path.join(datapath,class_name)

image_names=os.listdir(class_path)

for image_name in image_names:

image_full_path = os.path.join(class_path, image_name)

labelList.append(label_id)

image = cv2.imdecode(np.fromfile(image_full_path, dtype=np.uint8), -1)

image = cv2.resize(image, (norm_size, norm_size), interpolation=cv2.INTER_LANCZOS4)

if image.shape[2] >3:

image=image[:,:,:3]

print(image.shape)

image = img_to_array(image)

imageList.append(image)

imageList = np.array(imageList) / 255.0

return imageList

print(“开始加载数据”)

imageArr = loadImageData()

print(type(imageArr))

labelList = np.array(labelList)

print(“加载数据完成”)

print(labelList)

labelList = np_utils.to_categorical(labelList, classnum)

print(labelList)

做好数据之后,我们需要切分训练集和测试集,一般按照4:1或者7:3的比例来切分。切分数据集使用train_test_split()方法,需要导入from sklearn.model_selection import train_test_split 包。例:

trainX, valX, trainY, valY = train_test_split(imageArr, labelList, test_size=0.2, random_state=42)

4、图像增强


ImageDataGenerator()是keras.preprocessing.image模块中的图片生成器,同时也可以在batch中对数据进行增强,扩充数据集大小,增强模型的泛化能力。比如进行旋转,变形,归一化等等。

keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,samplewise_center

=False, featurewise_std_normalization=False, samplewise_std_normalization=False,zca_whitening=False,

zca_epsilon=1e-06, rotation_range=0.0, width_shift_range=0.0, height_shift_range=0.0,brightness_range=None, shear_range=0.0, zoom_range=0.0,channel_shift_range=0.0, fill_mode=‘nearest’, cval=0.0, horizontal_flip=False, vertical_flip=False, rescale=None, preprocessing_function=None,data_format=None,validation_split=0.0)

参数:

  • featurewise_center: Boolean. 对输入的图片每个通道减去每个通道对应均值。
  • samplewise_center: Boolan. 每张图片减去样本均值, 使得每个样本均值为0。
  • featurewise_std_normalization(): Boolean()
  • samplewise_std_normalization(): Boolean()
  • zca_epsilon(): Default 12-6
  • zca_whitening: Boolean. 去除样本之间的相关性
  • rotation_range(): 旋转范围
  • width_shift_range(): 水平平移范围
  • height_shift_range(): 垂直平移范围
  • shear_range(): float, 透视变换的范围
  • zoom_range(): 缩放范围
  • fill_mode: 填充模式, constant, nearest, reflect
  • cval: fill_mode == 'constant’的时候填充值
  • horizontal_flip(): 水平反转
  • vertical_flip(): 垂直翻转
  • preprocessing_function(): user提供的处理函数
  • data_format(): channels_first或者channels_last
  • validation_split(): 多少数据用于验证集

本例使用的图像增强代码如下:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

train_datagen = ImageDataGenerator(

rotation_range=20,

width_shift_range=0.2,

height_shift_range=0.2,

horizontal_flip=True)

val_datagen = ImageDataGenerator() # 验证集不做图片增强

training_generator_mix = MixupGenerator(trainX, trainY, batch_size=batch_size, alpha=0.2, datagen=train_datagen)()

val_generator = val_datagen.flow(valX, valY, batch_size=batch_size, shuffle=True)

注意:只在训练集上做增强,不在验证集上做增强。

5、 保留最好的模型和动态设置学习率


ModelCheckpoint:用来保存成绩最好的模型。

语法如下:

keras.callbacks.ModelCheckpoint(filepath, monitor=‘val_loss’, verbose=0, save_best_only=False, save_weights_only=False, mode=‘auto’, period=1)

该回调函数将在每个epoch后保存模型到filepath

filepath可以是格式化的字符串,里面的占位符将会被epoch值和传入on_epoch_end的logs关键字所填入

例如,filepath若为weights.{epoch:02d-{val_loss:.2f}}.hdf5,则会生成对应epoch和验证集loss的多个文件。

参数

  • filename:字符串,保存模型的路径
  • monitor:需要监视的值
  • verbose:信息展示模式,0或1
  • save_best_only:当设置为True时,将只保存在验证集上性能最好的模型
  • mode:‘auto’,‘min’,‘max’之一,在save_best_only=True时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当检测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断。
  • save_weights_only:若设置为True,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
  • period:CheckPoint之间的间隔的epoch数

ReduceLROnPlateau:当评价指标不在提升时,减少学习率,语法如下:

keras.callbacks.ReduceLROnPlateau(monitor=‘val_loss’, factor=0.1, patience=10, verbose=0, mode=‘auto’, epsilon=0.0001, cooldown=0, min_lr=0)

当学习停滞时,减少2倍或10倍的学习率常常能获得较好的效果。该回调函数检测指标的情况,如果在patience个epoch中看不到模型性能提升,则减少学习率

参数

  • monitor:被监测的量
  • factor:每次减少学习率的因子,学习率将以lr = lr*factor的形式被减少
  • patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
  • mode:‘auto’,‘min’,‘max’之一,在min模式下,如果检测值触发学习率减少。在max模式下,当检测值不再上升则触发学习率减少。
  • epsilon:阈值,用来确定是否进入检测值的“平原区”
  • cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
  • min_lr:学习率的下限

本例代码如下:

checkpointer = ModelCheckpoint(filepath=‘best_model.hdf5’,

monitor=‘val_accuracy’, verbose=1, save_best_only=True, mode=‘max’)

reduce = ReduceLROnPlateau(monitor=‘val_accuracy’, patience=10,

verbose=1,

factor=0.5,

min_lr=1e-6)

6、建立模型并训练


model = Sequential()

model.add(MobileNetV2(include_top=False, pooling=‘avg’, weights=‘imagenet’))

model.add(Dense(classnum, activation=‘softmax’))

model.summary()

optimizer = Adam(learning_rate=INIT_LR)

model.compile(optimizer=optimizer, loss=‘categorical_crossentropy’, metrics=[‘accuracy’])

history = model.fit(training_generator_mix,

steps_per_epoch=trainX.shape[0] / batch_size,

validation_data=val_generator,

epochs=EPOCHS,

validation_steps=valX.shape[0] / batch_size,

callbacks=[checkpointer, reduce])

model.save(‘my_model.h5’)

print(history)

运行结果:

随着训练次数的增加,准确率已经过达到了0.95。

image-20220203093510835

7、保留训练结果,并将其生成图片


loss_trend_graph_path = r"WW_loss.jpg"

acc_trend_graph_path = r"WW_acc.jpg"

import matplotlib.pyplot as plt

print(“Now,we start drawing the loss and acc trends graph…”)

summarize history for accuracy

fig = plt.figure(1)

plt.plot(history.history[“accuracy”])

plt.plot(history.history[“val_accuracy”])

plt.title(“Model accuracy”)

plt.ylabel(“accuracy”)

plt.xlabel(“epoch”)

plt.legend([“train”, “test”], loc=“upper left”)

plt.savefig(acc_trend_graph_path)

plt.close(1)

summarize history for loss

fig = plt.figure(2)

plt.plot(history.history[“loss”])

plt.plot(history.history[“val_loss”])

plt.title(“Model loss”)

plt.ylabel(“loss”)

plt.xlabel(“epoch”)

plt.legend([“train”, “test”], loc=“upper left”)

plt.savefig(loss_trend_graph_path)

plt.close(2)

print(“We are done, everything seems OK…”)

#windows系统设置10关机

#os.system(“shutdown -s -t 10”)

结果:

image-20220203093652422

image-20220203093718299

测试部分

===============================================================

单张图片预测


最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值