Matlab图形绘制(1)

最后

不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~

给大家准备的学习资料包括但不限于:

Python 环境、pycharm编辑器/永久激活/翻译插件

python 零基础视频教程

Python 界面开发实战教程

Python 爬虫实战教程

Python 数据分析实战教程

python 游戏开发实战教程

Python 电子书100本

Python 学习路线规划

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

2.3  标题和图例标注

3 双纵坐标、多子图绘制

3.1 双纵坐标绘图

3.2  多子图绘制

3.3 多图绘制

4 图形的直接编辑

5 三维数据可视化

5.1 三维曲线绘制

5.2 三维曲面绘制


0 主要内容


基本二维曲线绘制

绘图辅助操作

双纵坐标、多子图绘制

图形的直接编辑

三维数据可视化

1 基本二维曲线绘制


1.1  plot(y)

y 可以是向量、实数矩阵或复数向量。

 y 是向量 :绘制以向量索引为横坐标、以向量元素值为纵坐标的图形。

 y 是实数矩阵 :绘制 y 的列向量对其坐标索引的图形。

 y 是复数向量 :

plot(y) 相当于 plot(real(y),imag(y))

取              取

实              虚

部              部

%例1.1.1

y= 5*(rand(1,10)-.5)

plot(y)

                             

%例1.1.2

y= [0 1 2;2 3 4;5 6 7]

plot(y)

1.2 plot(x,y)

x,y均可以是向量和矩阵。

 x,y 均是 n 维向量 :绘制向量 y 对向量 x 的图形, x 为横坐标、 y 为纵坐标。

 x 是 n 维向量, y 是 m × nn × m 阶矩阵 :在同一图内绘制 m 条不同颜色的曲线, x 为横坐标、      纵坐标为y 矩阵的 mn 维 分量。在同一图内绘制 多条自变量相同的 不同的 曲线 。

x ,y 均是 m × n 阶矩阵 :在同一图内绘制 n 条不同颜色的曲线,以 x 对应列分量 为横坐标、 y         对应列分量为纵坐标。

plot(t,[y1;y2;…])

 plot(t,y1)

hold on

plot(t,y2, ‘r’)

 plot(x1,y1,x2,y2,…,xn,yn)

用于在同一图内绘制 横坐标不同 的 多条 曲线 。


%例1.2.1

x=0:0.1:10;

y= sin(2*x);

plot(x,y)


%例1.2.2

x=0:0.1:10;

y=[sin(x)+2; cos(x)+1]

plot(x,y)


%例1.2.3

x=0:0.01:10;

y1=sin(x)+2;

y2= cos(x)+1;

plot(x,[y1;y2])

x=0:0.01:10;

y1=sin(x)+2;

y2= cos(x)+1;

plot(x,y1)

hold on

plot(x,y2,’r’)


%例1.2.4

t1=0:0.2:4*pi;

y1= exp(-0.1*t1).*sin(t1);

t2=0:0.2:2*pi;

y2= exp(-0.5*t2).sin(5t2+1);

plot(t1,y1,‘+k’,t2,y2,‘:r’)

绘图辅助操作


2.1 颜色、标记和线型

颜色 :用不同的英文字母表示不同的 颜色,多数与英文单词对应。

标记和线型

    

plot命令可设定的属性


%例2.1.1

t1=0:0.2:4*pi;

y1= exp(-0.1*t1).*sin(t1);

t2=0:0.2:2*pi;

y2= exp(-0.5*t2).sin(5t2+1);

plot(t1,y1,‘+k’)

hold on

plot(t2,y2,‘:r’)

2.2 坐标轴标注和范围设置

坐标轴的标注、范围、刻度以及宽高比。

坐标轴标注函数 : xlabel 、 ylabel 、 zlabel

格式: xlabel (‘string’)

string :标注所用的说明字符串

xlabel (‘x’)

 坐标范围标注函数 : axis

格式: axis ( 横轴范围 纵轴范围 )

axis([-4 4 -5 5])


%例2.2

t=0:0.02:2*pi;

x= 4*sin(t);

y= 5*cos(t);

plot(x,y)

xlabel(‘指定范围’)

axis([-4 4 -5 5])

2.3  标题和图例标注

标题 是对所绘图形的说明。

格式: title (‘string’)

string :标注所用的说明字符串

 图例标注 是为图形中的所有曲线进行标注。

格式: legend (‘string1’, ‘string2’,…)

legend (‘location’, ‘location’,…)

string i :标注按绘制的先后顺序生成的曲线

legend :定义标注放置的位置


%例2.3

x=-pi:pi/20:pi;

y1= cos(x);

y2= sin(x);

plot(x,y1, ‘-ro’,x,y2, ‘-.b’)

title(‘curve’)

legend(‘y1’, ‘y2’, ‘location’,‘southeast’)

双纵坐标、多子图绘制


3.1 双纵坐标绘图

plotyy(x1,y1,x2,y2) 两条曲线 x1-y1 、 x2-y2 分别以左右纵轴 为纵坐标。


%例3.1

x1=0:0.1:5;

y1= exp(-x1/3);

x2=0:0.1:5;

y2= sin(2*x2);

plotyy(x1,y1,x2,y2)

title(‘plotyy exam’)

3.2  多子图绘制

在一个图形窗绘制多条不同的曲线。

subplot(m,n,p)

将图形窗分为 m × n 个子窗口,在第 p 个子 窗口中绘制图形。子图的编号顺序为从左 到右,从上到下。 p 为子图编号。


学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、全套PDF电子书

书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。

四、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

五、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化学习资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值