最后
不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~
给大家准备的学习资料包括但不限于:
Python 环境、pycharm编辑器/永久激活/翻译插件
python 零基础视频教程
Python 界面开发实战教程
Python 爬虫实战教程
Python 数据分析实战教程
python 游戏开发实战教程
Python 电子书100本
Python 学习路线规划
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
2.3 标题和图例标注
3 双纵坐标、多子图绘制
3.1 双纵坐标绘图
3.2 多子图绘制
3.3 多图绘制
4 图形的直接编辑
5 三维数据可视化
5.1 三维曲线绘制
5.2 三维曲面绘制
0 主要内容
基本二维曲线绘制
绘图辅助操作
双纵坐标、多子图绘制
图形的直接编辑
三维数据可视化
1 基本二维曲线绘制
1.1 plot(y)
y 可以是向量、实数矩阵或复数向量。
y 是向量 :绘制以向量索引为横坐标、以向量元素值为纵坐标的图形。
y 是实数矩阵 :绘制 y 的列向量对其坐标索引的图形。
y 是复数向量 :
plot(y) 相当于 plot(real(y),imag(y))
取 取
实 虚
部 部
%例1.1.1
y= 5*(rand(1,10)-.5)
plot(y)
%例1.1.2
y= [0 1 2;2 3 4;5 6 7]
plot(y)
1.2 plot(x,y)
x,y均可以是向量和矩阵。
x,y 均是 n 维向量 :绘制向量 y 对向量 x 的图形, x 为横坐标、 y 为纵坐标。
x 是 n 维向量, y 是 m × n 或 n × m 阶矩阵 :在同一图内绘制 m 条不同颜色的曲线, x 为横坐标、 纵坐标为y 矩阵的 m 个 n 维 分量。在同一图内绘制 多条自变量相同的 不同的 曲线 。
x ,y 均是 m × n 阶矩阵 :在同一图内绘制 n 条不同颜色的曲线,以 x 对应列分量 为横坐标、 y 对应列分量为纵坐标。
plot(t,[y1;y2;…])
plot(t,y1)
hold on
plot(t,y2, ‘r’)
plot(x1,y1,x2,y2,…,xn,yn)
用于在同一图内绘制 横坐标不同 的 多条 曲线 。
%例1.2.1
x=0:0.1:10;
y= sin(2*x);
plot(x,y)
%例1.2.2
x=0:0.1:10;
y=[sin(x)+2; cos(x)+1]
plot(x,y)
%例1.2.3
x=0:0.01:10;
y1=sin(x)+2;
y2= cos(x)+1;
plot(x,[y1;y2])
x=0:0.01:10;
y1=sin(x)+2;
y2= cos(x)+1;
plot(x,y1)
hold on
plot(x,y2,’r’)
%例1.2.4
t1=0:0.2:4*pi;
y1= exp(-0.1*t1).*sin(t1);
t2=0:0.2:2*pi;
y2= exp(-0.5*t2).sin(5t2+1);
plot(t1,y1,‘+k’,t2,y2,‘:r’)
2 绘图辅助操作
2.1 颜色、标记和线型
颜色 :用不同的英文字母表示不同的 颜色,多数与英文单词对应。
标记和线型
plot命令可设定的属性
%例2.1.1
t1=0:0.2:4*pi;
y1= exp(-0.1*t1).*sin(t1);
t2=0:0.2:2*pi;
y2= exp(-0.5*t2).sin(5t2+1);
plot(t1,y1,‘+k’)
hold on
plot(t2,y2,‘:r’)
2.2 坐标轴标注和范围设置
坐标轴的标注、范围、刻度以及宽高比。
坐标轴标注函数 : xlabel 、 ylabel 、 zlabel
格式: xlabel (‘string’)
string :标注所用的说明字符串
xlabel (‘x’)
坐标范围标注函数 : axis
格式: axis ( 横轴范围 纵轴范围 )
axis([-4 4 -5 5])
%例2.2
t=0:0.02:2*pi;
x= 4*sin(t);
y= 5*cos(t);
plot(x,y)
xlabel(‘指定范围’)
axis([-4 4 -5 5])
2.3 标题和图例标注
标题 是对所绘图形的说明。
格式: title (‘string’)
string :标注所用的说明字符串
图例标注 是为图形中的所有曲线进行标注。
格式: legend (‘string1’, ‘string2’,…)
legend (‘location’, ‘location’,…)
string i :标注按绘制的先后顺序生成的曲线
legend :定义标注放置的位置
%例2.3
x=-pi:pi/20:pi;
y1= cos(x);
y2= sin(x);
plot(x,y1, ‘-ro’,x,y2, ‘-.b’)
title(‘curve’)
legend(‘y1’, ‘y2’, ‘location’,‘southeast’)
3 双纵坐标、多子图绘制
3.1 双纵坐标绘图
plotyy(x1,y1,x2,y2) 两条曲线 x1-y1 、 x2-y2 分别以左右纵轴 为纵坐标。
%例3.1
x1=0:0.1:5;
y1= exp(-x1/3);
x2=0:0.1:5;
y2= sin(2*x2);
plotyy(x1,y1,x2,y2)
title(‘plotyy exam’)
3.2 多子图绘制
在一个图形窗绘制多条不同的曲线。
subplot(m,n,p)
将图形窗分为 m × n 个子窗口,在第 p 个子 窗口中绘制图形。子图的编号顺序为从左 到右,从上到下。 p 为子图编号。
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、学习软件
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
三、全套PDF电子书
书籍的好处就在于权威和体系健全,刚开始学习的时候你可以只看视频或者听某个人讲课,但等你学完之后,你觉得你掌握了,这时候建议还是得去看一下书籍,看权威技术书籍也是每个程序员必经之路。
四、入门学习视频
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
五、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!