【模板】中国剩余定理(CRT)/ 曹冲养猪
题目描述
自从曹冲搞定了大象以后,曹操就开始捉摸让儿子干些事业,于是派他到中原养猪场养猪,可是曹冲满不高兴,于是在工作中马马虎虎,有一次曹操想知道母猪的数量,于是曹冲想狠狠耍曹操一把。举个例子,假如有 16 16 16 头母猪,如果建了 3 3 3 个猪圈,剩下 1 1 1 头猪就没有地方安家了。如果建造了 5 5 5 个猪圈,但是仍然有 1 1 1 头猪没有地方去,然后如果建造了 7 7 7 个猪圈,还有 2 2 2 头没有地方去。你作为曹总的私人秘书理所当然要将准确的猪数报给曹总,你该怎么办?
输入格式
第一行包含一个整数 n n n —— 建立猪圈的次数,接下来 n n n 行,每行两个整数 a i , b i a_i, b_i ai,bi,表示建立了 a i a_i ai 个猪圈,有 b i b_i bi 头猪没有去处。你可以假定 a 1 ∼ a n a_1 \sim a_n a1∼an 互质。
输出格式
输出包含一个正整数,即为曹冲至少养母猪的数目。
样例 #1
样例输入 #1
3
3 1
5 1
7 2
样例输出 #1
16
提示
1 ≤ n ≤ 10 1 \leq n\le10 1≤n≤10, 0 ≤ b i < a i ≤ 100000 0 \leq b_i\lt a_i\le100000 0≤bi<ai≤100000, 1 ≤ ∏ a i ≤ 1 0 18 1 \leq \prod a_i \leq 10^{18} 1≤∏ai≤1018
思路
总思路:
- 细节1:这道题如果不对CRT的结果进行限制的话,很可能会爆long long,因此我们这时候就得用龟速乘了。其他的就按照模板来写。
代码
#include<iostream>
#include<cstring>
//x=b(mod a)
#define int long long
using namespace std;
const int N = 15;
int a[N],b[N];
int n;
int M=1;
int exgcd(int a,int b,int &x,int &y){
if(!b){
x=1,y=0;
return a;
}
int d=exgcd(b,a%b,y,x);
y-=a/b*x;
return d;
}
int qmul(int a,int b){
int res=0;
while(b){
if(b&1)res=(res+a)%M;
a=(a+a)%M;
b>>=1;
}
return res;
}
void CRT(){
int res=0;
for(int i=1;i<=n;i++){
int m=M/a[i];
int x,y;
//b[i]*r*r^{-1}
//逆元也就是求:M*(a[i]^-1)
//求r-1=> mx=1(mod a[i])
int d=exgcd(m,a[i],x,y);
x=(x%a[i]+a[i])%a[i];
// res=(res+x%M*b[i]%M*m%M)%M;
res=(res+qmul(qmul(b[i],x),m))%M;
}
cout<<res;
}
signed main(){
//sbljw
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i]>>b[i];
M*=a[i];
}
CRT();
return 0;
}