环状最大两段子段和(线性dp):最大子段和第 3 弹

108 篇文章 0 订阅

环状最大两段子段和

题目描述

给出一段长度为 n n n 的环状序列 a a a,即认为 a 1 a_1 a1 a n a_n an 是相邻的,选出其中连续不重叠且非空的两段使得这两段和最大。

输入格式

第一行是一个整数 n n n,表示序列的长度。

第二行有 n n n 个整数,描述序列 a a a,第 i i i 个数字表示 a i a_i ai

输出格式

一行一个整数,为最大的两段子段和是多少。

样例 #1

样例输入 #1

7
2 -4 3 -1 2 -4 3

样例输出 #1

9

提示

数据规模与约定

对于全部的测试点,保证 2 ≤ n ≤ 2 × 1 0 5 2 \leq n \leq 2 \times 10^5 2n2×105 − 1 0 4 ≤ a i ≤ 1 0 4 -10^4 \leq a_i \leq 10^4 104ai104

思路

  • 首先,这道题相较于第 2 弹多了个环字,那么此时处理过程就不一样了。

  • 然后我们发现本道题的规律:

  • 不难发现,我们能选择的集合只有下面两种情况:

    1.     ( 000 ) 111 ( 000 ) 111 ( 000 ) 1.\ \ \ (000)111(000)111(000) 1.   (000)111(000)111(000)

    2.     111 ( 000 ) 111 ( 000 ) 111 2.\ \ \ 111(000)111(000)111 2.   111(000)111(000)111

  • 其中 0 旁边的括号表示:中间的 0 可以省略也符合题意。

  • 此时我们可以分情况讨论。

  • 第一种情况:也就是我们之前我们求第二弹的代码直接粘过来就行了。主要难在第二种情况

  • 第二种情况:我们可以先算出总和,然后减去最小子段和,此时就是最大子段和的值了,怎么实现呢?我们求最小子段和,可以对数组取反,就是正的变成负的,负的变成正的。

AC代码

#include<iostream>
#include<algorithm>
#include<cstring>
//总和-两段最小子段和
using namespace std;

const int N = 2e5+10;

int w[N],n;
int f[N],g[N];
int ans;
int tot;

int sum(){
    int ans=-2e9;

    for(int i=1;i<=n;i++){
        f[i]=max(f[i-1]+w[i],w[i]);
    }

    for(int i=n;i;i--){
        g[i]=max(g[i+1]+w[i],w[i]);
    }


    for(int i=1;i<=n;i++){
        f[i]=max(f[i],f[i-1]);
    }

    for(int i=n;i;i--){
        g[i]=max(g[i+1],g[i]);
    }

    for(int i=2;i<=n;i++){
        ans=max(ans,f[i-1]+g[i]);
    }

    return ans;
}

int main(){
    cin>>n;

    memset(f,-0x3f,sizeof f);
    memset(g,-0x3f,sizeof g);

    for(int i=1;i<=n;i++){
        cin>>w[i];
        tot+=w[i];
    }

    ans=sum();/第一种情况
	
	//第二种情况
    for(int i=1;i<=n;i++){
        w[i]=-w[i];
    }
    //求最小子段和
    if(tot+sum())ans=max(ans,tot+sum());

    cout<<ans;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

green qwq

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值