voice = [] #[‘粗’, ‘粗’, ‘粗’, ‘细’, ‘细’, ‘粗’, ‘粗’, ‘粗’]
sex = [] #[‘男’, ‘男’, ‘男’, ‘女’, ‘女’, ‘女’, ‘女’, ‘女’]
for one in pri_data:
hair.append(one[0])
voice.append(one[1])
sex.append(one[2])
cu_voive = voice.count(‘粗’) #6
thin_voice = voice.count(‘细’) #2
一维列表合并成多维列表
d = []
for i in range(len(hair)):
for j in range(len(voice)):
if i == j:
for k in range(len(sex)):
if j == k:
t = [hair[i], voice[j], sex[k]]
d.append(t)
print(d)
a = d.count([‘短’, ‘粗’, ‘男’]) #2
b = d.count([‘短’, ‘粗’, ‘女’]) #1
c = d.count([‘长’, ‘粗’, ‘男’]) #1
e = d.count([‘长’, ‘粗’, ‘女’]) #2
f = d.count([‘长’, ‘细’, ‘女’]) #1
g = d.count([‘短’, ‘细’, ‘女’]) #1
#一维列表合并成二维列表
z=list(zip(voice,sex))
cu_woman =z.count((‘粗’,‘女’))
cu_man = z.count((‘粗’,‘男’))
num_v_h = (cu_woman + cu_man)
return cu_voive, thin_voice, cu_woman, cu_man, num_v_h
def empty2(pri_data):
hair = [] # [‘长’, ‘短’, ‘短’, ‘长’, ‘短’, ‘短’, ‘长’, ‘长’]
voice = [] # [‘粗’, ‘粗’, ‘粗’, ‘细’, ‘细’, ‘粗’, ‘粗’, ‘粗’]
sex = [] # [‘男’, ‘男’, ‘男’, ‘女’, ‘女’, ‘女’, ‘女’, ‘女’]
for one in pri_data:
hair.append(one[0])
voice.append(one[1])
sex.append(one[2])
一维列表合并成二维列表
k = list(zip(hair, sex))
long_man =k.count((‘长’,‘男’))
long_woman = k.count((‘长’,‘女’))
sum_hair1 = long_man + long_woman
short_man = k.count((‘短’,‘男’))
short_woman = k.count((‘短’,‘女’))
sum_hair2 = short_man + short_woman
sum_Hair = sum_hair1 + sum_hair2
return long_man, long_woman, sum_hair1,sum_hair2,sum_Hair,short_man,short_woman
用声音作为优先选择特征求信息增益
def xxx1(cu_voice,thin_voice,cu_woman,cu_man,num_v_h):
voice_num=cu_voice+thin_voice
A = -cu_voive/voice_num * (cu_woman/num_v_h) * np.log2(cu_woman/num_v_h) - \
cu_voive/voice_num * (cu_man/num_v_h) * np.log2(cu_man/num_v_h)
sum_v = getData(pri_data) - A
return sum_v
用头发作为优先选择特征求信息增益
def xxx2(long_man, long_woman, sum_hair,sum_hair2,sum_Hair,short_man,short_woman):
B = -sum_hair/sum_Hair* (long_man/sum_hair) * np.log2(long_man/sum_hair) - \
sum_hair/sum_Hair * (long_woman/sum_hair) * np.log2(long_woman/sum_hair) - sum_hair2/sum_Hair * (short_man/sum_hair2) * np.log2(short_man/sum_hair2)\
- sum_hair2/sum_Hair* (short_woman/sum_hair2) * np.log2(short_woman/sum_hair2)
sum_h = getData(pri_data) - B
return sum_h
if name == “main”:
pri_data = [[‘长’, ‘粗’, ‘男’], [‘短’, ‘粗’, ‘男’], [‘短’, ‘粗’, ‘男’],
[‘长’, ‘细’, ‘女’], [‘短’, ‘细’, ‘女’], [‘短’, ‘粗’, ‘女’],
[‘长’, ‘粗’, ‘女’], [‘长’, ‘粗’, ‘女’]]
total_shang=getData(pri_data)
cu_voive, thin_voice, cu_woman, cu_man, num_v_h=empty1(pri_data)
sum1 = xxx1(cu_voive, thin_voice, cu_woman, cu_man, num_v_h)
print(‘用声音作为优先选择特征求信息增益:’,sum1)
long_man, long_woman, sum_hair1, sum_hair2, sum_Hair, short_man, short_woman=empty2(pri_data)
sum2 = xxx2(long_man, long_woman, sum_hair1, sum_hair2, sum_Hair, short_man, short_woman)
print(‘用头发作为优先选择特征求信息增益:’,sum2)
if sum1 > sum2:
print(“用声音作为优先选择特征求信息增益大”)
else:
print(“用头发作为优先选择特征求信息增益大”)
截图:
四、实验内容
(1)案例描述:通过天气、温度、湿度、是否有风4个特征来决策是否打球。使用Python实现求出其信息增益,并得出哪个特征优先被选择(注:数据处理使用程序计算,数据见data.xls)。
数据集如下:
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
最后
Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
👉Python所有方向的学习路线👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
👉Python必备开发工具👈
工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。
👉Python全套学习视频👈
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。
👉实战案例👈
学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。
因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。
👉大厂面试真题👈
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
面试资料相信大家都能找到满意的工作。
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-7u4Vk6PA-1712475284991)]