- 博客(4)
- 收藏
- 关注
翻译 CREMA-D:演员表演众包标注的多模态情绪数据集(专业翻译)
人们通过他们的面部表情和语音表情传达他们的情绪状态。我们提出了一个独特的视听数据集,专门用于研究多模态情绪的表达和感知。该数据集包括以一系列基本情绪状态(快乐happy、悲伤sad、愤怒anger、恐惧fear、厌恶disgust和中立neutral)。来自91名不同种族背景的演员说出的句子,录制了7,442个片段,由众包的2,443名标注者以三种模态进行评分:音频,视频和视听,标注了情绪分类标签和情绪强度标签。
2024-05-14 23:31:20
2350
2
原创 多模态情绪识别的野外数据集评估
多模态情感识别意味着使用不同的资源和技术来识别和识别人类的情感。各种数据源,如人脸,语音,语音,文本和其他必须同时处理这个识别任务。然而,大多数主要基于深度学习的技术都是使用在受控条件下设计和构建的数据集进行训练的,这使得它们在具有真实的条件的真实的上下文中的适用性更加困难。出于这个原因,这项工作的目的是评估一组野外数据集,以显示它们在多模态情感识别方面的优势和劣势。评估了四个野外数据集:AFEW,SFEW,MELD和AffWild2。
2024-05-07 20:21:05
2924
1
原创 AFEM学习笔记
在我们的比较实验中,我们使用了来自AFEW和CK+数据库的六个常见类别(愤怒,恐惧,厌恶,快乐,悲伤和惊讶)。而不是手动扫描一个完整的电影,我们的标签只审查推荐系统建议的视频剪辑,它搜索的剪辑与一个主题显示一个有意义的表达的概率很高。随后,我们描述了三个版本的SFEW,这是基于主题的依赖程度,在不同的情况下,用于评估系统的面部表情识别性能。我们的基线结果表明,据报道,目前的面部表情识别方法在现有数据集上实现了较高的识别率,但无法科普这种现实环境,因此需要建立新的数据库和进一步的研究。图1.数据库创建过程。
2024-05-07 15:05:19
2061
1
原创 HEU情感数据集学习笔记
HEU Emotion共包含19004个视频片段,根据数据来源分为两部分。第一部分包含从Tumblr,Google和Giphy下载的视频,包括10种情绪和两种形式(面部表情和身体姿势)。第二部分包括从电影、电视剧和综艺节目中手工提取的语料,包括10种情绪和三种模态(面部表情、身体姿势和情绪言语),拥有9951个受试。
2024-05-06 18:19:53
2283
4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人