命题1,证明:方程
1/x+1/y+1/z=1/2024
只有有限多个自然数解。
证:设x,y,z∈N满足方程,x≤y≤z,则0<1/z≤1/y≤1//x。所以
1/z<1/x+1/y+1/z=1/2024≤3/x
由此得,2024<x≤2*2024。因此,x取值至多有4048个。对x的每个取值,
1/2024-1/x=1/y+1/z≤2/y。即
y≤4048x/(x-2024)<4*2024^2
因此,y的取值最多4*2024^2。
最后,如果x,y的值给定,那么z的值就唯一确定。于是适合x≤y≤z的自然数解不超过2*2024*4*2024^2=8*2024^3。
所以,考虑当(a,b,c)为一组解时,x,y,z的排列3x2x1=6,于是原方程的自然数解总数不超过
6*8*2024^3个。
如果想要求出一个最小正整数解,却没有固定的方法。
命题2,证明:方程x^2+5=y^3没有整数解。
证明,假设方程有整数解,x,y∈N满足方程。如果x为奇数,x=2k+1,k∈N,那么,
x^2=(2k十1)^2=4(k^2+K)+1,即x^2被4除余1。于是
y^3=x^2+5被4除2。但是,这时y^3为偶数,被4整除,矛盾。即x不能为奇数。所以,x为偶数。
当x为偶数时,y^3=x^2十5被4除余1,y为奇数,所以y^3被4除余1,由此知,y被4除余1。于是,设
x=2n,y=4m+1,n,m∈N。代入原方程
(2n)^2+5=(4m+1)^3。→
4(n^2+1)=(4m+1)^3-1=4m(16m^2+12m+3),→
n^2+1=m(16m^2+12m+3)
=md,其中d=16m^2+12m+3
因为d为奇数,且d被4除余3,如果d的素因子都是4K+1形,则d被4除余1,所以,d中至少有一个素因子p=4K十3,K∈N。于是,
n^2+1=md被p除余0,这样,
n^2被p除余-1。而
n^(p-1)=n^(4K+3-1)=n^(4k+2)=(n^2)^(2k+1)被p除-1。但这与费马小定理n^(p-1)被p除余1相矛盾。
所以,原方程无整数解。(李扩继)