在实时与离线一体化的今天,数据湖与数据仓库边界不断融合,越来越多企业选用如 Hudi、Iceberg、Delta Lake 等开源方案实现统一的数据存储、计算、分析平台。本篇将围绕以下关键点,展开实战对比与解决方案分享:
-
✅ 实时写入能力
-
✅ ACID 保证
-
✅ 增量数据处理能力
-
✅ 流批一体
-
✅ Schema 演进能力
-
✅ 平台选型建议
一、架构演进背景
传统离线数仓存在写入慢、不支持更新、资源割裂等问题,数据湖则强调存储与计算分离、统一元数据管理、支持多引擎读写(如 Hive / Flink / Spark / Trino),推动流批一体。
二、三大主流开源方案概览
特性 \ 引擎 | Apache Hudi | Apache Iceberg | Delta Lake |
---|---|---|---|
写入模式 | MOR / COW | Append-only / Merge-on-read | Append-only / Update |
并发写支持 | ✅(支持乐观锁) | ✅(支持快照隔离) |