宝石 STL hash

这篇文章介绍了一种算法,通过使用哈希表(unordered_map)和欧几里得算法(gcd)来解决一个涉及宝石乘积的问题,目标是在O(N^2)的时间复杂度内找到满足特定条件的宝石对。作者在代码中展示了如何利用vis数组存储中间结果并优化查找过程。
摘要由CSDN通过智能技术生成

发现可以O(N^2) 然后可以边做边处理两个宝石的乘积,然后另一个可以直接查hash

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
using pii = pair<int,int>;
#define int long long
const int N = 1e5+10;
const int inf = 0x3f3f3f3f;
const int mod = 1e9+7;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a*b/gcd(a,b);}
int qmi(int a,int b,int mod){int res=1;while(b){if(b&1)res=res*a%mod;b>>=1;a=a*a%mod;}return res;}


int n,q,m;

// int e[N],ne[N],w[N],h[N],idx;
// void add(int a,int b,int c){
	// e[idx] = b,ne[idx] = h[a],w[idx] = c,h[a] = idx++;
// }
int a[N]; 

unordered_map<int,bool>vis;

void solve()
{
	cin>>n;
	for(int i=1;i<=n;i++)cin>>a[i];
	int ans = 0;
	for(int i=n;i>=1;--i){
		if(!a[i]&&vis[0]){
			ans++;
			continue;
		}
		
		for(int j=n;j>i;--j){
			if(a[j]&&a[i]%a[j]==0&&vis[a[i]/a[j]]){
				ans++;
				break;
			}
		}
		
		for(int j=n;j>=i;--j)vis[a[i]*a[j]] = true;
		
		
	}
	
	cout<<ans;
}

signed main()
{
	ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
	int _;
	//cin>>_;
	_ = 1;
	while(_--)solve();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值