1.选择非变化区域原因
做变化检测实验时,深度学习需要非变化或变化区域样本作为训练数据,所以准确度非变化区域对于样本训练极为重要
2.选择样本的方法
-
随机采样:从图像中随机选择非变化区域作为样本。这种方法简单快捷,但可能会引入一些噪声或不均衡的样本分布。
-
基于像素相似度:通过计算像素之间的相似度来选择非变化区域样本。可以使用像素差异度量,如像素差异、颜色直方图、梯度等,选取与变化区域相似度较低的样本。
-
基于纹理特征:使用纹理特征来选择非变化区域样本。可以利用纹理描述(如局部二值模式、Gabor滤波器响应等)或纹理统计特征(如纹理能量、对比度等)来选择与变化区域纹理特征差异较大的样本。
-
基于聚类算法:使用聚类算法(如K-means、Mean-Shift等)对图像进行分割,将非变化区域划分为不同的簇,然后选择每个簇的中心点作为样本。
-
基于超像素分割:使用超像素分割算法将图像划分为具有相似性质的区域,然后选择非变化的超像素作为样本。
-
基于先验知识:利用先验知识或领域专家的经验选择非变化区域样本。例如,在某些特定应用中,我们可能知道某些区域是已知非变化区域(如天空、道路等),可以根据这些知识进行样本选择。
3.如何增加样本选取的准确性
需要根据具体问题和数据集的特点选择适合的样本选取方法。有时也可以结合多个方法,以获得更好的样本选择效果。样本选择的目标是使训练样本能够充分代表非变化区域,从而提高异源变化检测模型的性能。
注解:后续可能会实现上述部分方法,敬请期待