2023.8.5
这题只要把 动态规划的递推公式想明白就很好做了。 例如:爬到3楼的方法 = 爬到1楼的方法+爬到2楼的方法。因为爬到1楼了,那你只需在爬2个台阶就到3楼了;而爬到2楼了,你只需再爬1个台阶就到3楼了。 想明白这个 ,就可以直接用dp算法敲代码了:
class Solution {
public:
int climbStairs(int n) {
vector<int> dp(n+1);
if(n <= 2) return n;
dp[1] = 1;
dp[2] = 2;
for(int i=3; i<=n; i++)
{
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
};
ps:构造dp数组时,大小要设为n+1,如果设为n得话,那数组只能取到n-1,因为数组索引是从0开始算的。
2023.8.17
这几天接触了0-1背包和完全背包,本题也可以转化为一个完全背包问题:n阶楼梯为背包,每次可以爬的楼梯阶数为物品。 下面使用完全背包的做法解本题。 代码如下:
class Solution {
public:
int climbStairs(int n) {
vector<int> dp(n+1);
dp[0] = 1;
for(int j=0; j<=n; j++)
{
for(int i=1; i<=2; i++)
{
if(j>=i)
{
dp[j] += dp[j-i];
}
}
}
return dp[n];
}
};
2023.10.12
三刷。 动态规划java代码如下:
class Solution {
public int climbStairs(int n) {
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = 1;
for(int i=2; i<n+1; i++){
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
}