人脸表情识别数据集分享(内含AffectNet、Rafdb、Ferplus等数据集)

前言:

        人脸表情识别有三大主流数据集rafdb、affectnet、ferplus,之前跑rafdb精度挺正常的,但是另外两个数据集复现不出来精度,经过几个月的踩坑,我发现其实是数据集的原因。

        我通过官方渠道找的AffectNet数据集有几十个G,都是没有裁剪过的,我下载下来都费劲,完整跑一次还得要两周...并且affectnet和ferplus都是按表情类别分文件夹存储的,而Raf-db是所有训练集都放在train文件当中,然后会有一个标签文件(csv文件)指明哪张图片属于什么类别,再用dataset文件将他们关联起来而另外两个数据集都不是这种结构的,跑出来的精度就会差很多。 于是仿照Raf-db的思路,我找到处理之后的AffectNet和FERPlus数据集,并且仿照rafdb写了一份dataset文件,整个数据集结构和raf-db的目录结构一样,跑出来精度就恢复正常了!affectnet大概是20-40epock之内就能出最优结果,ferplus大概需要100-200epock出最优结果。并且裁剪处理之后的affectnet只有4G多,方便多了。 

        需要数据集的直接后台私信我,我看到了会回复。刚入这领域不太懂的也可以找我讨论,少走点弯路。

        接下来看一下数据集的结构:

数据集结构:

下面看一下处理之后的AffectNet和FERPlus数据集:

AffectNet:

总目录结构:

训练集(28w+张):

测试集4k张(每个类别500张):

下面还有7分类和8分类的标签文件以及对应的dataset文件,使用方式可以参考rafdb,没用过的可以咨询我,这里就不一一赘述了。

FERPLUS:

总目录结构:

3.5w+张:训练集+测试集 (这里训练集和测试集放一起,最后3千多张是测试集)

后面也有对应训练集和测试集的标签,以及dataset文件,也是和raf-db一样的使用方式。

使用方式:

### 关于FERPlus数据集的分类方法 FERPlus 数据集是对原始 FER2013 数据集的情感标签进行了扩展和改进后的版本[^1]。它提供了更精细的表情类别标注,支持多种分类方式,主要包括 **7分类** 和 **8分类** 的情感标签。 #### 1. 分类方式 - **7分类**: 表情分为七种基本情绪类别,分别是愤怒 (Angry)、厌恶 (Disgust)、恐惧 (Fear)、快乐 (Happy)、悲伤 (Sad)、惊讶 (Surprise),以及中立 (Neutral)[^2]。 - **8分类**: 在7分类的基础上增加了一个额外的情绪类别——轻蔑 (Contempt)。 这些分类方式使得研究人员可以根据具体需求选择适合的任务设置。例如,在某些应用场景中可能不需要区分“轻蔑”,此时可以选择7分类;而在其他需要更高精度的应用场景,则可采用8分类模式。 #### 2. 数据集用途 FERPlus 主要被应用于面部表情识别领域中的研究与开发工作。其典型应用包括但不限于以下几个方面: - **学术研究**: 提供高质量的数据资源来训练深度学习模型并评估算法性能。通过该数据集可以探索不同网络架构对于复杂表情的理解能力[^4]。 - **实际产品开发**: 可用于构建各种基于人脸识别技术的产品和服务,比如心理健康监测工具、虚拟助手交互优化等。利用 SSD 融合 FERPlus 模型能够实现实时的人脸情绪分析功能。 以下是使用 Python 实现加载部分 FERPlus 数据的一个简单示例代码片段: ```python import pandas as pd # 加载FERPlus数据集CSV文件 data = pd.read_csv('ferplus.csv') # 查看前几行数据结构 print(data.head()) ``` 此代码仅作为演示如何读取 CSV 文件内容之用,并未涉及具体的图像处理逻辑。
评论 64
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值