博主研究生期间做的是表情识别相关的研究,这里整理了几个比较常用的数据集,我论文中使用的是AffectNet、RAF-DB、FERPlus,这几个数据集标注质量较高,适合用来训练和测试模型。
博主这里将所有类别的图片统一存放在/train(训练集)和/test(测试集)文件夹下,并通过标签文件关联类别,并使用dataset文件加载和预处理数据集(如图9),亲测这种方式可以复现精度,典型的数据集结构示例如下:
data
├── train/ # 训练集图片(混合类别)
│ ├── img1.jpg
│ ├── img2.jpg
│ └── ...
├── test/ # 测试集图片(混合类别)
│ ├── img1001.jpg
│ ├── img1002.jpg
│ └── ...
├── train_labels.csv # 训练集标签
├── test_labels.csv # 测试集标签
└── dataset.py # 数据集加载及预处理
下面分别介绍一下几种数据集:
1、AffectNet
表情识别领域最大的数据集,经过裁剪处理之后只有4.6G,图片尺寸224x224,七分类八分类均有。包括训练集(26w+张)、测试集(4k张)、标签文件、dataset文件等。如图:
2、RAF-DB
表情识别领域最受欢迎的数据集,图片较为轻量,尺寸为100x100,七分类。包括训练集(1.2w+张)、测试集(3k+张)、标签文件、dataset文件等。如图:
3、FERPlus
FERPlus是对原始 FER2013 数据集的扩展,图片尺寸48x48,八分类。包括训练集(2.8w+张)、测试集(3k+张)、标签文件、dataset文件等。如图:
4、FER2013、ck+
FER2013和ck+数据集都是七分类数据集,图片是按照七个类别来分的,如图:
5、使用方式
数据集的使用方式可以参考我的上一篇文章:
人脸表情识别数据集的正确使用方法(Affectnet、RAF-DB、FERPlus数据集通用)-CSDN博客
这些数据集大多可在官网或学术平台申请下载(需填写使用协议),如果需要博主处理后的数据集或使用建议,可以私信或者关注留言。