人脸表情识别数据集分享(AffectNet、RAF-DB、FERPlus、FER2013、ck+)

博主研究生期间做的是表情识别相关的研究,这里整理了几个比较常用的数据集,我论文中使用的是AffectNet、RAF-DB、FERPlus,这几个数据集标注质量较高,适合用来训练和测试模型。

博主这里将所有类别的图片统一存放在/train(训练集)和/test(测试集)文件夹下,并通过标签文件关联类别,并使用dataset文件加载和预处理数据集(如图9),亲测这种方式可以复现精度典型的数据集结构示例如下:

data

├── train/ # 训练集图片(混合类别)

│ ├── img1.jpg

│ ├── img2.jpg

│ └── ...

├── test/ # 测试集图片(混合类别)

│ ├── img1001.jpg

│ ├── img1002.jpg

│ └── ...

├── train_labels.csv # 训练集标签

├── test_labels.csv # 测试集标签

└── dataset.py # 数据集加载及预处理

下面分别介绍一下几种数据集:

1、AffectNet

        表情识别领域最大的数据集,经过裁剪处理之后只有4.6G,图片尺寸224x224,七分类八分类均有。包括训练集(26w+张)、测试集(4k张)、标签文件、dataset文件等。如图:

2、RAF-DB

        表情识别领域最受欢迎的数据集,图片较为轻量,尺寸为100x100,七分类。包括训练集(1.2w+张)、测试集(3k+张)、标签文件、dataset文件等。如图:

3、FERPlus

        FERPlus是对原始 FER2013 数据集的扩展,图片尺寸48x48,八分类。包括训练集(2.8w+张)、测试集(3k+张)、标签文件、dataset文件等。如图:

4、FER2013、ck+

FER2013和ck+数据集都是七分类数据集,图片是按照七个类别来分的,如图:

5、使用方式

数据集的使用方式可以参考我的上一篇文章:

人脸表情识别数据集的正确使用方法(Affectnet、RAF-DB、FERPlus数据集通用)-CSDN博客

这些数据集大多可在官网或学术平台申请下载(需填写使用协议),如果需要博主处理后的数据集或使用建议,可以私信或者关注留言。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值