基于flask+vue的电影可视化与智能推荐系统

基于flask+vue+爬虫的电影数据的智能推荐与可视化系统,能展示电影评分、评论情感分析等直观的数据可视化图表,还能通过协同过滤算法为用户提供个性化电影推荐,帮助用户发现更多感兴趣的电影作品,具体界面如图所示。

本系统主要技术架构如下:

1、后端技术

  • Flask: 轻量级Web框架,用于构建RESTful API
  • SQLAlchemy: Python ORM框架,提供对数据库的抽象操作
  • Marshmallow: 序列化/反序列化库,处理数据格式转换
  • MySQL: 关系型数据库,存储电影和用户数据
  • Jieba: 中文分词库,用于文本分析
  • PaddlePaddle & PaddleNLP: 开源深度学习框架,实现情感分析
  • Scrapy: 爬虫框架,用于爬取电影数据
  • 协同过滤算法: 实现基于用户(UserCF)和基于物品(ItemCF)的推荐系统

2、前端技术

  • Vue.js: 前端框架,构建用户界面
  • Vuetify: 基于Material Design的Vue组件库,提供美观的UI
  • ECharts: 数据可视化库,实现各种图表展示
  • Axios: HTTP客户端,处理API请求

系统功能模块介绍:

1. 主页

  • 展示评分较高的电影推荐
  • 基于物品的协同过滤算法(ItemCF)推荐电影
  • 基于用户的协同过滤算法(UserCF)推荐电影
  • 个性化推荐内容,基于用户历史浏览和评分行为

2. 电影库

  • 电影搜索功能,支持关键词检索
  • 电影详情展示,包括评分、导演、演员、简介等
  • 影评情感分析展示,可视化用户评价的积极/消极情绪

3. 数据分析

  • 电影上映统计分析
  • 优质电影的低潮高峰趋势图
  • 各类型电影分析(面积图)
  • 科幻电影专项分析
  • 近年电影上映情况分析
  • 影片上映年份分布分析

4. 数据统计

  • 电影类型分布统计
  • 国家/地区电影产量统计
  • 评分分布统计
  • 热门电影和导演数据展示

5. 词云分析

  • 基于电影描述和评论的词云可视化
  • 关键词提取和展示
  • 热门话题和标签分析

6. 评分分析

  • 不同类型电影评分对比
  • 随时间变化的评分趋势
  • 评分与上映时间关系的散点图分析
  • 评分与票房关系分析

7. 时空分析

  • 各国家/地区电影发展时间线
  • 电影产业全球分布热力图

8. 情感预测

  • 基于LSTM深度学习模型的评论情感分析
  • 输入任意电影评论文本,预测情感倾向(好评/差评)

相关界面展示:

另:需要添加或定制代码功能、其他咨询可以后台发送具体要求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值