简介
基数排序(英语:Radix sort)是一种非比较型的排序算法,最早用于解决卡片排序的问题。
它的工作原理是将待排序的元素拆分为k个关键字(比较两个元素时,先比较第一关键字,如果相同再比较第二关键字……),然后先对第k关键字进行稳定排序,再对第k-1关键字进行稳定排序,再对第k-2关键字进行稳定排序……最后对第一关键字进行稳定排序,这样就完成了对整个待排序序列的稳定排序。
基数排序需要借助一种 稳定算法 完成内层对关键字的排序。
通常而言,基数排序比基于比较的排序算法(比如快速排序)要快。但由于需要额外的内存空间,因此当内存空间稀缺时,原地置换算法(比如快速排序)或许是个更好的选择。
稳定性
基数排序是一种稳定的排序算法。
时间复杂度
一般来说,如果每个关键字的值域都不大,就可以使用 计数排序 作为内层排序,此时的复杂度为 O(kn + k ∑ i=1 wi),其中 wi 为第 i 关键字的 值域大小。如果关键字值域很大,就可以直接使用基于比较的 O(nk log n) 排序而 无需使用基数排序了。
代码框架
const int N = 100010;
const int W = 100010;
const int K = 100;
int n, w[K], k, cnt[W];
struct Element {
int key[K];
bool operator<(const Element& y) const {
// 两个元素的比较流程
for (int i = 1; i <= k; ++i) {
if (key[i] == y.key[i]) continue;
return key[i] < y.key[i];
}
return false;
}
} a[N], b[N];
void counting_sort(int p) {
memset(cnt, 0, sizeof(cnt));
for (int i = 1; i <= n; ++i) ++cnt[a[i].key[p]];
for (int i = 1; i <= w[p]; ++i) cnt[i] += cnt[i - 1];
// 为保证排序的稳定性,此处循环i应从n到1
// 即当两元素关键字的值相同时,原先排在后面的元素在排序后仍应排在后面
for (int i = n; i >= 1; --i) b[cnt[a[i].key[p]]--] = a[i];
memcpy(a, b, sizeof(a));
}
void radix_sort() {
for (int i = k; i >= 1; --i) {
// 借助计数排序完成对关键字的排序
counting_sort(i);
}
}