简介
二分查找(英语:binary search),也称折半搜索(英语:half-interval search)、对数搜索(英语:logarithmic search),是用来在一个有序数组中查找某一元素的算法。
工作原理
以在一个升序数组中查找一个数为例。
它每次考察数组当前部分的中间元素,如果中间元素刚好是要找的,就结束搜索过程;如果中间元素小于所查找的值,那么左侧的只会更小,不会有所查找的元素,只需到右侧查找;如果中间元素大于所查找的值同理,只需到左侧查找。
时间复杂度
二分查找的最优时间复杂度为 O(1)。
二分查找的平均时间复杂度和最坏时间复杂度均为 O(log n)。因为在二分搜索过 程中,算法每次都把查询的区间减半,所以对于一个长度为 n 的数组,至多会进 行 O(log n) 次查找。
空间复杂度
迭代版本的二分查找的空间复杂度为 O(1)。
递归(无尾调用消除)版本的二分查找的空间复杂度为 O(log n)。
代码框架
int binary_search(int start, int end, int key) {
int ret = -1; // 未搜索到数据返回-1下标
int mid;
while (start <= end) {
mid = start + ((end - start) >> 1); // 直接平均可能会溢出,所以用这个算法
if (arr[mid] < key)
start = mid + 1;
else if (arr[mid] > key)
end = mid - 1;
else { // 最后检测相等是因为多数搜索情况不是大于就是小于
ret = mid;
break;
}
}
return ret; // 单一出口
}
注意,这里的有序是广义的有序,如果一个数组中的左侧或者右侧都满足某一种条件,而另一侧都不满足这种条件,也可以看作是一种有序(如果把满足条件看做1,不满足看做0 ,至少对于这个条件的这一维度是有序的)。换言之,二分搜索法可以用来查找满足某种条件的最大(最小)的值。
要求满足某种条件的最大值的最小可能情况(最大值最小化),首先的想法是从小到大枚举这个作为答案的「最大值」,然后去判断是否合法。若答案单调,就可以使用二分搜索法来更快地找到答案。因此,要想使用二分搜索法来解这种「最大值最小化」的题目,需要满足以下三个条件:
- 答案在一个固定区间内;
- 可能查找一个符合条件的值不是很容易,但是要求能比较容易地判断某个值是否是符合条件的;
- 可行解对于区间满足一定的单调性。换言之,如果x是符合条件的,那么有x+1或者x-1也符合条件。(这样下来就满足了上面提到的单调性)
当然,最小值最大化是同理的。
STL的二分查找
C++ 标准库中实现了查找首个不小于给定值的元素的函数 std::lower_bound和查找首个大于给定值的元素的函数std::upper_bound ,二者均定义于头文件 <algorithm>
中。
二者均采用二分实现,所以调用前必须保证元素有序。