C++三分法

简介

如果需要求出单峰函数的极值点,通常使用二分法衍生出的三分法求单峰函数的极值点。

为什么不通过求导函数的零点来求极值点?

客观上,求出导数后,通过二分法求出导数的零点(由于函数是单峰函数,其导数在同一范围内的零点是唯一的)得到单峰函数的极值点是可行的。

但首先,对于一些函数,求导的过程和结果比较复杂。

其次,某些题中需要求极值点的单峰函数并非一个单独的函数,而是多个函数进行特殊运算得到的函数(如求多个单调性不完全相同的一次函数的最小值的最大值)。此时函数的导函数可能是分段函数,且在函数某些点上可能不可导。

注意

只要函数是单峰函数,三分法既可以求出其最大值,也可以求出其最小值。为行文方便,除特殊说明外,下文中均以求单峰函数的最小值为例。

三分法与二分法的基本思想类似,但每次操作需在当前区间 [l, r](下图中除去虚 线范围内的部分)内任取两点 lmid, rmid(lmid < rmid)(下图中的两蓝点)。如 下图,如果 f(lmid) < f(rmid),则在 [rmid, r](下图中的红色部分)中函数必然 单调递增,最小值所在点(下图中的绿色部分)必然不在这一区间内,可舍去这一区 间。反之亦然。

注意 

在计算lmid和rmid时,需要防止数据溢出的现象出现。

三分法每次操作会舍去两侧区间中的其中一个。为减少三分法的操作次数,应使 两侧区间尽可能大。因此,每一次操作时的 lmid 和 rmid 分别取 mid − ε 和 mid + ε 是一个不错的选择。

代码实现

while (r - l > eps) {
  mid = (lmid + rmid) / 2;
  lmid = mid - eps;
  rmid = mid + eps;
  if (f(lmid) < f(rmid))
    r = mid;
  else
    l = mid;
}

例题

题目

给定一个 N 次函数和范围 [l, r],求出使函数在 [l, x] 上单调递增且在 [x, r] 上单调递减的唯一的 x 的值。

思路

本题要求求 N 次函数在 [l, r] 取最大值时自变量的值,显然可以使用三分法。

代码

#include <cmath>
#include <cstdio>
using namespace std;

const double eps = 0.0000001;
int N;
double l, r, A[20], mid, lmid, rmid;

double f(double x) {
  double res = (double)0;
  for (int i = N; i >= 0; i--) res += A[i] * pow(x, i);
  return res;
}

int main() {
  scanf("%d%lf%lf", &N, &l, &r);
  for (int i = N; i >= 0; i--) scanf("%lf", &A[i]);
  while (r - l > eps) {
    mid = (l + r) / 2;
    lmid = mid - eps;
    rmid = mid + eps;
    if (f(lmid) > f(rmid))
      r = mid;
    else
      l = mid;
  }
  printf("%6lf", l);
  return 0;
}

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值