先看一道例题:
洛谷P1757通天之分组背包
题目描述
自 01 01 01 背包问世之后,小 A 对此深感兴趣。一天,小 A 去远游,却发现他的背包不同于 01 01 01 背包,他的物品大致可分为 k k k 组,每组中的物品相互冲突,现在,他想知道最大的利用价值是多少。
输入格式
两个数 m , n m,n m,n,表示一共有 n n n 件物品,总重量为 m m m。
接下来 n n n 行,每行 3 3 3 个数 a i , b i , c i a_i,b_i,c_i ai,bi,ci,表示物品的重量,利用价值,所属组数。
输出格式
一个数,最大的利用价值。
样例 #1
样例输入 #1
45 3
10 10 1
10 5 1
50 400 2
样例输出 #1
10
提示
1
≤
m
,
n
≤
1000
1 \leq m, n \leq 1000
1≤m,n≤1000,
1
≤
k
≤
100
1\leq k\leq 100
1≤k≤100,
a
i
,
b
i
,
c
i
a_i, b_i, c_i
ai,bi,ci 在 int
范围内。
这种题怎么想呢?其实是从「在所有物品中选择一件」变成了「从当前组中选择一件」,于是就对每一组进行一次 0-1 背包就可以了。
再说一说如何进行存储。我们可以将 t(k,i) 表示第 k 组的第 i 件物品的编号是多少,再用 cnt (k) 表示第 k 组物品有多少个。
C++代码实现
for (int k = 1; k <= ts; k++) // 循环每一组
for (int i = m; i >= 0; i--) // 循环背包容量
for (int j = 1; j <= cnt[k]; j++) // 循环该组的每一个物品
if (i >= w[t[k][j]]) // 背包容量充足
dp[i] = max(dp[i], dp[i - w[t[k][j]]] + c[t[k][j]]); // 像0-1背包一样状态转移
这里要注意:一定不能 搞错循环顺序,这样才能保证正确性。
下一章讲有依赖的背包。