最优化问题解的存在性

文章探讨了Weierstrass定理,强调了在有界紧集上的连续函数存在最大值和最小值。文章还讨论了如何处理非有界定义域和非连续函数的情况,如强制函数和不满足定理条件的函数,指出它们可能不具备全局极小值点。
摘要由CSDN通过智能技术生成
Weierstrass定理:

即定义在紧集的连续函数一定存在最大(最小)值点。

解读:紧集:若一个集合它不仅是闭集还是有界的,则该集合被称作紧集。区间[−2,4] 是紧集,因为它既是闭集又有界。

下水平集函数  

函数 f: R^{n} \rightarrow R 的 \alpha 下水平集定义为:C_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\}

强制函数:

f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{-\infty,+\infty\} ; f(x) \rightarrow+\infty ,as \|x\| \rightarrow+\infty . 

但是这个定理中对于条件的要求较为严格,即需要紧的定义域和连续的目标函数,需要将定理推广以保证解的存在性。当函数f(x)的最小值不能在无穷远处取到,即我们可以仅在一个有界的下水平集中考虑f(x)的最小值。

当定义域不是有界闭集时,我们通过例子来进一步解释上面的定理.对 于强制函数 f (x) = x2, x ∈ X = R,其全局最优解一定存在.但对于适当且 闭的函数 f (x) = e−x , x ∈ X = R,它不满足定理4.1三个条件中任意一个,因 此我们不能断言其全局极小值点存在.事实上,其全局极小值点不存在.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值