CYGNSS数据说明

CYGNSS数据下载在PO.DAAC | Earthdata (nasa.gov); Earthdata | Earthdata (nasa.gov)上免费下载。

CYGNSS任务将产生三个级别的科学数据产品,该卫星每天最多会提供8个netCDF的文件,即每颗小行星会接收一个文件【通常每天有6-8个航天器检索数据,但在需要高于正常检索频率的特殊情况下,可以最大限度地增加到8个航天器】。运行矩形边界为:(40.0°,-180.0°,-40°,180°),影像自上至下:运行矩形边界;CYGNSS运行示意图(来源:密歇根大学)

 

 数据名称解读cyg03.ddmi.s20230511-000000-e20230511-235959.l1.power-brcs.a21.d21

CygCYGNSS缩写,0x是指8颗行星中第X颗的代号,s是指start timee是指end timea21.d21应为2.1版本的。

Level 1数据产品:Delay Doppler maps

该产品是经过校准的双基站雷达横截面的DDM数据

目前有level1 2.1version:

相较于version2.0,该版本的改进:

(1)当CYGNSS卫星在轨道高β角期间远离最低点时,现在可以获得数据,从而产生大量额外数据;

(2)对坐标帧进行校正,可以更准确地估计镜面点处的接收天线增益;

(3)改进了模数转换的校准,使CYGNSS卫星在几乎相同位置和时间的测量结果具有更好的一致性;

(4)改进的GPS EIRP和发射天线方向图校准结果显著降低了观测值对prn的依赖;

(5)改进了对DDM内镜面点位置的估计;

(6)利用高度相关的散射面积对散射截面进行归一化(v2.0采用了更简单的散射面积模型,随入射角和方位角而变化,而不随高度变化);

(7)对v2.0数据中观测到的延迟波形散射截面和前缘斜率的噪声底相关偏差进行了修正。用户还应注意,在此v2.1版本中,接收器天线方向图校准不应用于每个ddm -bin。

Level 3.1version:

相较于3.0 version:该版本数据校准和处理改进的总结:

(1)CYGNSS科学天线增益方向图进行了调整,以提高海洋表面散射截面(即NBRCS)校准的精度。对它们进行调整,使观测到的NBRCS年平均值与模型预测的平均值相匹配,该平均值来自Wavewatch-3对表面粗糙度的估计,并在粗糙度光谱中添加了适当的光谱尾扩展。调整是在科学天线方向图的每个位置独立进行的。

(2)此外,还增加了机载数字处理器对粗量化效应的校正。这减少了射频干扰的影响,这些干扰在v3.0 L1 NBRCS中表现为校准偏差,在v3.0 L2风速中表现为检索偏差,这些偏差在某些位置持续存在。

Level2数据产品:风速反演和平均方坡

2级风速产品是以镜面点为中心的约9.7 x 9.7平方英里(25 x 25平方公里)区域的空间平均风速。虽然CYGNSS任务的主要目标是测量海洋表面风,但1级产品也可能与海洋表面的均方斜率(MSS)有关,这对于理解海空界面的物理过程至关重要。

Level3级产品

网格化风速和均方斜率3级网格化风速产品由2级风速在0.2°纬度/经度网格上的空间和时间平均值得出。每个3级网格风文件覆盖整个CYGNSS星座一个小时的时间段。3级MSS产品是2级MSS产品的类似网格版本。

Row data

           03号星                                              01号星                                             04号星 

                                   

             05号星                                              07号星                                            08号星

                                            

 大家转载请注明出处

有错误的地方请大家指教哈

 

 

 

<think>好的,我现在要帮助用户了解如何使用卷积神经网络(CNN)进行海面风速反演。首先,我需要回顾用户提供的引用内容,看看有没有相关的信息。用户提到了引用[2]和引用[3],其中提到CNN用于处理DDM数据(延迟多普勒图)以及特征提取。另外,引用[5]提到CNN-LSTM模型在光伏功率预测中的应用,这可能对时间序列处理有帮助。 首先,我需要明确海面风速反演通常使用的数据源。根据我的知识,卫星遥感数据,如散射计、高度计或合成孔径雷达(SAR)的数据常用于反演海面风速。此外,GNSS-R(全球导航卫星系统反射信号)技术,如CYGNSS任务,也用于获取海面风速,通过分析DDM数据。这点在引用[2]中提到,使用CNN处理DDM数据,提升反演效率与精度。 接下来,用户想知道方法和实现步骤。我需要分步骤解释,包括数据准备、模型构建、训练和验证等。根据引用[3],CNN能够从图像和时序数据中提取特征,这可能适用于处理遥感图像数据,如DDM或其他卫星图像。 需要注意,CNN处理的是空间特征,因此在数据预处理时,需要将输入数据转换为适合CNN的格式,比如二维图像或矩阵。例如,DDM数据本身是二维的,可以直接作为CNN的输入。同时,可能需要对数据进行归一化、去噪等预处理,如引用[3]提到的预处理步骤。 然后,模型架构方面,可能需要设计卷积层、池化层、全连接层等。引用[3]也提到CNN的输出可以用于优化模型的超参数,这可能涉及到模型调参或集成其他方法,如结合LSTM处理时间序列,但用户的问题主要关注CNN部分。 在实现部分,用户可能需要代码示例。根据示例中的Python代码,我应该提供一个简单的CNN模型结构,使用TensorFlow或PyTorch框架。同时,需要确保数据加载、训练循环等步骤正确。 另外,验证部分需要说明如何评估模型性能,比如使用均方误差(MSE)或相关系数。引用[2]提到提升反演效率与精度,可能涉及比较传统方法和CNN方法的性能。 可能遇到的问题包括数据不足、过拟合,或者如何处理不同分辨率的卫星数据。需要提到数据增强、正则化方法,或者多源数据融合,如引用[4]提到的多源数据输入,可能结合其他气象数据提升风速反演精度。 最后,生成相关问题时要考虑用户可能的后续疑问,比如数据预处理的具体方法、模型优化、实际应用中的挑战等。</think>### 使用CNN进行海面风速遥感反演的方法及实现 #### 1. **数据准备与预处理** - **数据来源**:使用GNSS-R(如CYGNSS任务)的延迟多普勒图(DDM)数据,或卫星散射计、SAR影像数据。DDM是二维矩阵,直接适用于CNN的输入结构[^2]。 - **预处理步骤**: - 归一化:将DDM强度值归一化到$[0,1]$范围。 - 去噪:通过高斯滤波或小波变换消除噪声。 - 标签匹配:将DDM数据与实测风速(如浮标、气象站数据)进行时空对齐。 #### 2. **CNN模型构建** - **输入层**:接收DDM图像(例如$128 \times 128$像素)。 - **卷积层**:提取空间特征,例如: ```python from tensorflow.keras import layers model = tf.keras.Sequential([ layers.Conv2D(32, (3,3), activation='relu', input_shape=(128, 128, 1)), layers.MaxPooling2D((2,2)), layers.Conv2D(64, (3,3), activation='relu'), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dense(1) # 输出风速值 ]) ``` - **优化目标**:最小化预测风速与真实值的均方误差(MSE)。 #### 3. **训练与验证** - **损失函数**:$$ L = \frac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2 $$ - **数据划分**:按7:2:1划分训练集、验证集、测试集。 - **过拟合控制**:使用Dropout层或L2正则化。 #### 4. **多源数据融合(可选)** - 结合辅助数据(如海表温度、波浪高度)提升精度,可通过多分支CNN融合不同数据源的特征[^4]。 #### 5. **实现示例(Python)** ```python import tensorflow as tf # 加载预处理后的DDM数据集和标签 train_data, train_labels = load_data() # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) # 训练 history = model.fit(train_data, train_labels, epochs=50, validation_split=0.2) # 评估 test_loss, test_mae = model.evaluate(test_data, test_labels) print(f"Test MAE: {test_mae:.2f} m/s") ``` #### 6. **应用与优化方向** - **动态反演**:结合软件定义接收机技术,适应不同地表类型(如海洋-陆地过渡区域)[^2]。 - **模型轻量化**:使用深度可分离卷积减少计算量,便于部署在卫星边缘设备。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值