-
相关介绍:
在病因推断、剂量效应研究中,时常要分析自变量和因变量的数量关系。广义线性模型,如Logistic回归、Possion回归等是应用比较广泛的方法。它的一个重要假设是通过选择合适的链接函数,因变量与自变量的关系呈线性。这个假设在某些情况下并不成立。
此时一个常见的处理是采用百分位数等方法将连续性变量分段(P value for trend)。但是分段往往主观,而且损失信息,并有可能引入偏倚。本文介绍限制性立方样条拟合自变量和因变量之间的非线性关系。
限制性立方样条中节点的个数(k)和位置可以由研究人员根据研究背景和数据选择。当有较强的背景知识支持,知道自变量和应变量的关系在某些特定节点转折时,可以选择这些特定的节点。但是实际上往往没有足够的背景知识足以确定节点的个数和位置。所幸绝大多数情况下,节点的位置对限制性立方样条的拟合影响不大,相对来说节点的个数是更关键的参数。节点的个数决定曲线的形状,或者说平滑程度。当节点的个数为2时,得到的拟合曲线就是一条直线。当节点个数等于样本量时,相当于将各个点用线段相连,得到的是完全拟合但是不平滑的折线。由于节点个数的选择和自由度有关,所以当样本量比较大的时候可以取较多的节点。但是,一般来说节点个数取3~7就足够了。
-
RCS案例图形: