题目
7-2 整数分解为若干项之和
分数 25
作者 DS课程组
单位 浙江大学
将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。
输入格式:
每个输入包含一个测试用例,即正整数N (0<N≤30)。
输出格式:
按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N
1
={n
1
,n
2
,⋯}和N
2
={m
1
,m
2
,⋯},若存在i使得n
1
=m
1
,⋯,n
i
=m
i
,但是n
i+1
<m
i+1
,则N
1
序列必定在N
2
序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。
输入样例:
7
输出样例:
7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7
代码
#include<stdio.h>
int cnt=0;
int a[50];
void dfs(int number,int n,int length,int sum)
{
if(sum==n){
cnt++;
printf("%d=",n);
printf("%d",a[0]);
for(int i=1;i<length;i++){
printf("+%d",a[i]);
}
if(cnt%4==0&&cnt!=0){
printf("\n");
}
if(cnt%4!=0&&number!=n){
printf(";");
}
}
if(sum>n) return;
for(int i=number;i<=n;i++){
a[length]=i;
dfs(i,n,length+1,sum+i);
}
}
int main()
{
int n;
scanf("%d",&n);
dfs(1,n,0,0);
}