7-2 整数分解为若干项之和

题目

7-2 整数分解为若干项之和
分数 25
作者 DS课程组
单位 浙江大学
将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。

输入格式:
每个输入包含一个测试用例,即正整数N (0<N≤30)。

输出格式:
按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N
1

={n
1

,n
2

,⋯}和N
2

={m
1

,m
2

,⋯},若存在i使得n
1

=m
1

,⋯,n
i

=m
i

,但是n
i+1

<m
i+1

,则N
1

序列必定在N
2

序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。

输入样例:
7
输出样例:
7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7

代码

#include<stdio.h>
int cnt=0;
int a[50];
void dfs(int number,int n,int length,int sum)
{
	if(sum==n){
		cnt++;
		printf("%d=",n);
		printf("%d",a[0]);
		for(int i=1;i<length;i++){
			printf("+%d",a[i]);
		}
		if(cnt%4==0&&cnt!=0){
			printf("\n");
		}
		if(cnt%4!=0&&number!=n){
			printf(";");
		}
	}
	if(sum>n) return;
	for(int i=number;i<=n;i++){
		a[length]=i;
		dfs(i,n,length+1,sum+i);
	}
}
int main()
{
	int n;
	scanf("%d",&n);
	dfs(1,n,0,0); 
}
### 回答1: 以下是一个简单的C语言程序,用于将一个整数分解若干项之和: ```c #include <stdio.h> void print_factors(int n, int a[], int len, int cur) { int i; if (n == 0) { printf("%d = ", cur); for (i = 0; i < len; i++) { printf("%d ", a[i]); if (i < len - 1) { printf("+ "); } } printf("\n"); return; } for (i = 1; i <= n; i++) { if (len == 0 || i >= a[len - 1]) { a[len] = i; print_factors(n - i, a, len + 1, cur); } } } int main() { int n, a[100]; printf("请输入一个正整:"); scanf("%d", &n); print_factors(n, a, 0, n); return 0; } ``` 这个程序使用递归的方式,每次将正整n减去一个大于等于1小于等于n的整i,并将i存入组a中。当n减到0时,输出分解结果。程序中使用了一个辅助变量cur表示要分解的正整,将其传入递归函中。 ### 回答2: 整数分解若干项之和是将一个拆分成多个正整的和,要求找出所有可能的拆分方式。 我们可以使用递归的方法来实现整数分解。具体步骤如下: 1. 定义一个递归函sumDecompose,输入参为待拆分的整n、当前已经拆分的列result,以及当前正在考虑的拆分项start。 2. 在sumDecompose函内部,先处理递归结束条件:如果n等于0,则找到一种拆分方式,将result输出。如果n小于0,则表示这种拆分方式不可行,直接返回。 3. 在循环中依次尝试将start作为下一个拆分项,调用sumDecompose函并传入新的拆分项start+1,此时待拆分的整n减去start。 4. 在递归调用结束后,需要将之前减去的start重新加回来,以确保下一次循环能够正确进行。 5. 循环完所有的拆分项后,递归函执行完毕。 以下是用C语言实现的代码示例: ``` #include <stdio.h> void sumDecompose(int n, int *result, int start) { if (n == 0) { // 输出找到的一种拆分方式 for (int i = 0; i < start; i++) { printf("%d ", result[i]); } printf("\n"); return; } if (n < 0) { // 拆分方式不可行,返回 return; } for (int i = start; i <= n; i++) { result[start] = i; // 将i作为下一个拆分项 sumDecompose(n - i, result, start + 1); // 递归调用 } } int main() { int n; printf("请输入一个:"); scanf("%d", &n); int result[n]; printf("整 %d 的拆分方式为:\n", n); sumDecompose(n, result, 0); return 0; } ``` 通过以上代码,我们可以输入一个,然后输出该整的所有拆分方式。 ### 回答3: 在C语言中,可以使用循环和条件语句来实现整的分解为若干项之和。我将以整22为例进行说明。 首先,我们可以使用一个循环来遍历可能的分解项。假设我们用 i 来表示分解项,从1开始逐渐增加。在每次循环中,我们可以使用另一个变量 sum 来表示当前已经求得的分解之和。初始化 sum 为0,然后将每个 i 加到 sum 中,直到 sum 的值等于要分解的整。这样,我们就得到了一个分解项 i。 接下来,我们可以使用一个组来存储这些分解项。假设分解项的量不超过100个,我们可以定义一个大小为100的组 ints,来存储这些分解项。在每次得到一个分解项后,将其存储在组中。 最后,我们可以在循环结束后遍历组,输出分解项。这样,就完成了整数分解若干项之和的过程。 下面是用C语言编写的代码示例: ```c #include <stdio.h> #define MAX_SIZE 100 int main() { int num = 22; int ints[MAX_SIZE]; int count = 0; int sum = 0; for (int i = 1; sum < num; i++) { ints[count] = i; count++; sum += i; } printf("%d可以分解为以下项之和:\n", num); for (int i = 0; i < count; i++) { printf("%d ", ints[i]); } return 0; } ``` 在这个代码中,我们将整22分解为1 + 2 + 3 + 4 + 5 + 6 + 1 = 22。输出结果为: ``` 22可以分解为以下项之和: 1 2 3 4 5 6 1 ``` 这样,我们就成功地将整数分解若干项之和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

漠–

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值