难度中等827
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。
-
例如,
[1, 7, 4, 9, 2, 5]
是一个 摆动序列 ,因为差值(6, -3, 5, -7, 3)
是正负交替出现的。 - 相反,
[1, 4, 7, 2, 5]
和[1, 7, 4, 5, 5]
不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。
给你一个整数数组 nums
,返回 nums
中作为 摆动序列 的 最长子序列的长度 。
示例 1:
输入:nums = [1,7,4,9,2,5] 输出:6 解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。
示例 2:
输入:nums = [1,17,5,10,13,15,10,5,16,8] 输出:7 解释:这个序列包含几个长度为 7 摆动序列。 其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。
示例 3:
输入:nums = [1,2,3,4,5,6,7,8,9] 输出:2
提示:
1 <= nums.length <= 1000
0 <= nums[i] <= 1000
贪心思路
所谓摆动序列就是正负正负正负....交替 或者 负正负正.....交替
对于一个当前数字,我们看它是否有摆动呢(是否是摆动序列的一员呢)?
- 情况1
最容易想到的情况就是这样
当prevDiff>0&&curDiff<0或者 prevDiff<0&&curDiff>0的情况
- 情况2
如果有平坡呢 ?
这里条件就变为了prevDiff>=0&&curDiff<0 或者 prevDiff<=0&&curDiff>0
当然还没有完事,更新prevDiff的时候一定要当坡度有变化的时候再去更新,否则不更新.
就比如单调有平坡的时候
- 情况三
题目中说了仅有一个元素或者含两个不等元素的序列也视作摆动序列。
当有一个元素的时候,摆动序列为1,
当有两个不等的元素的时候,我们可以认为前面有一个平坡
这个不用特殊处理,这个需要在代码上进行处理就可以了
class Solution {
public int wiggleMaxLength(int[] nums) {
if(nums.length==0) return 0 ;
int res = 1;//初始为1个数字,摆动序列长度为1
int prevDiff = 0;//当前数字的前一个坡度
int curDiff = 0;//当前数字的后一个坡度
for(int i =0;i<nums.length-1;++i) {
curDiff = nums[i+1] - nums[i];
if(prevDiff>=0&&curDiff<0 || prevDiff<=0&&curDiff>0) {
res ++;
prevDiff = curDiff;//只有在坡度变化的时候prevDiff在改变
}
}
return res;
}
}
怎么认为有一个数字的时候,前一个为平坡呢 ?
当有一个数字的时候就会符合prevDiff>=0&&curDiff<0 || prevDiff<=0&&curDiff>0这两个条件的其中一个.