首先我们要知道,线性代数的核心问题就是:线性方程组的求解问题。
一般来说,将线性方程组分为齐次线性方程组和非齐次线性方程组。
齐次线性方程组等式的右边全部为0,且该方程组一定有解;
非齐次线性方程组等式的右边不全为0,且该方程组不一定有解。
目录
一、行列式
行列式在考研线代中不属于重要部分,却是我们学习线性代数的基本功,也是们掌握线性代数计算的基本功。
1、n阶行列式的定义
1)、排列及其逆序数
排列:譬如1,2,3,...,n.形成的有序数组,称为n元排列。
n元排列共有n!种排列方式。
逆序:在一个n元排列中,一个大数排在一个小数前面,则二者构成一对逆序。
逆序数:逆序的总数成为逆序数。()
若逆序数为奇数,则称该n元排列为奇排列。
若逆序数为偶数,则称该n元排列为偶排列。
例:在三元排列(1 3 2)中,第一个数字为1,1的后面面没有比其更小的数字;第二个数字为3,2的后面有一个比其更小的数字;第三个数字为2,2为最后一个数字,故后面没有比其更小的数字。所以,在此三元排列中,逆序数=0+1+0=1。
2)、n阶行列式的定义
n阶行列式的定义:如图所示,共有n行,n列个元素。
n阶行列式的计算方法:将既不同行也不同列的元素的乘积求和。
其符号的判断为: 在行数确定的情况下(将行数正序排列),观察列数的逆序数,若为奇数,则为负号,若为偶数,则为正号。
注意事项:
①n阶行列式共有n!项。
②在计