从零开始的考研线性代数(1)

本文从线性方程组的背景引入,详细讲解了n阶行列式的定义,包括排列、逆序数、行列式的性质、行列式按行按列展开的计算方法,以及克莱姆法则的应用。行列式是线性代数基础,为后续的矩阵学习打下基础。
摘要由CSDN通过智能技术生成

首先我们要知道,线性代数的核心问题就是:线性方程组的求解问题。

一般来说,将线性方程组分为齐次线性方程组和非齐次线性方程组。

齐次线性方程组等式的右边全部为0,且该方程组一定有解

非齐次线性方程组等式的右边不全为0,且该方程组不一定有解

目录

一、行列式

1、n阶行列式的定义

1)、排列及其逆序数

 2)、n阶行列式的定义

 2、行列式的性质

1)行列式的性质

 3、行列式按行按列展开

1)、余子式和代数余子式

 2)、行列式按行/列展开定理

4、 行列式的计算

1)、低阶无特点行列式的计算

2)、爪形行列式的计算

5、克莱姆法则

结语


一、行列式

行列式在考研线代中不属于重要部分,却是我们学习线性代数的基本功,也是们掌握线性代数计算的基本功。

1、n阶行列式的定义

1)、排列及其逆序数

排列:譬如1,2,3,...,n.形成的有序数组,称为n元排列。

n元排列共有n!种排列方式

逆序:在一个n元排列中,一个大数排在一个小数前面,则二者构成一对逆序。

逆序数:逆序的总数成为逆序数。()

若逆序数为奇数,则称该n元排列为奇排列

若逆序数为偶数,则称该n元排列为偶排列

例:在三元排列(1 3 2)中,第一个数字为1,1的后面面没有比其更小的数字;第二个数字为3,2的后面有一个比其更小的数字;第三个数字为2,2为最后一个数字,故后面没有比其更小的数字。所以,在此三元排列中,逆序数=0+1+0=1。

 

 2)、n阶行列式的定义

n阶行列式的定义:如图所示,共有n行,n列个元素。

n阶行列式的计算方法:将既不同行也不同列的元素的乘积求和。

其符号的判断为: 在行数确定的情况下(将行数正序排列),观察列数的逆序数,若为奇数,则为负号,若为偶数,则为正号

注意事项:

n阶行列式共有n!项。

②在计

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值