微分方程(Blanchard Differential Equations 4th)中文版Section1.2

1.2 ANALYTIC TECHNIQUE: SEPARATION OF VARIABLES

微分方程与解

考虑如下标准形式的一阶(显式)微分方程
d y d t = f ( t , y ) {\frac{d y}{d t}}=f(t,y) dtdy=f(t,y)
其中方程右侧通常同时包含自变量 t t t与未知函数 y y y.
微分方程的是指代入方程两边使等式恒成立的函数。即:
函数  y ( t )  为方程的解 ⇔ d y ( t ) d t = f ( t , y ( t ) )  for all   t \text{函数}\ y(t)\ \text{为方程的解} \Leftrightarrow {\frac{d y(t)}{d t}}=f(t,y(t)) \ \text{for all}\ \ t 函数 y(t) 为方程的解dtdy(t)=f(t,y(t)) for all  t
此定义渴可用于检验某个函数是否为微分方程的解,但对方程求解无益。例如:
对于方程 d y d t = y {\frac{d y}{d t}}=y dtdy=y
容易验证 y 1 ( t ) = 3 e t y_1(t) = 3e^t y1(t)=3et 为方程的解,而 y 2 ( t ) = sin ⁡ t y_2(t)=\sin t y2(t)=sint 不是方程的解。
因为
d y 1 ( t ) d t = d ( 3 e t ) d t = 3 e t = y 1 ( t )   for all   t . {\frac{d y_1(t)}{d t}}={\frac{d (3e^t)}{d t}} = 3e^t =y_1(t)\ \ \text{for all}\ \ t. dtdy1(t)=dtd(3et)=3et=y1(t)  for all  t.
d y 2 ( t ) d t = d ( sin ⁡ t ) d t = cos ⁡ t ≠ y 2 ( t ) . {\frac{d y_2(t)}{d t}}={\frac{d (\sin t)}{d t}} = \cos t \neq y_2(t). dtdy2(t)=dtd(sint)=cost=y2(t).

检验函数是否为方程的解

d y d t = y 2 − 1 t 2 + 2 t , {\frac{d y}{d t}}={\frac{y^{2}-1}{t^{2}+2t}}, dtdy=t2+2ty21,
例如,假设我们在当地的浓缩咖啡吧遇到了三位微分方程教科书的作者:Paul,Bob 和 Glen,我们要求他们找到这个微分方程的解。经过几分钟的疯狂计算,保罗说
y 1 ( t ) = 1 + t y_1(t)=1+t y1(t)=1+t
为方程的一个解。
Glen 认为
y 2 ( t ) = 1 + 2 t y_2(t) = 1+2t y2(t)=1+2t
是方程的一个解。Bob认为
y 3 ( t ) = 1 y_3(t)=1 y3(t)=1
是方程的解。这三个函数哪个是解?
下面我们分别验证:
d y 1 ( t ) d t = d ( 1 + t ) d t = 1 = y 1 ( t ) 2 − 1 t 2 + 2 t = ( 1 + t ) 2 − 1 t 2 + 2 t . {\frac{dy_1(t)}{d t}}=\frac{d(1+t)}{dt}=1 =\frac{y_1(t)^{2}-1}{t^{2}+2t}=\frac{(1+t)^{2}-1}{t^{2}+2t}. dtdy1(t)=dtd(1+t)=1=t2+2ty1(t)21=t2+2t(1+t)21.
左右两边相等。因此,Paul给出的解正确。
d y 2 ( t ) d t = d ( 1 + 2 t ) d t = 2 ≠ y 2 ( t ) 2 − 1 t 2 + 2 t = ( 1 + 2 t ) 2 − 1 t 2 + 2 t = 4 t + 4 t + 2 . {\frac{dy_2(t)}{d t}}=\frac{d(1+2t)}{dt}=2 \neq \frac{y_2(t)^{2}-1}{t^{2}+2t}=\frac{(1+2t)^{2}-1}{t^{2}+2t}=\frac{4t+4}{t+2}. dtdy2(t)=dtd(1+2t)=2=t2+2ty2(t)21=t2+2t(1+2t)21=t+24t+4.
因此,Glen’s给出的函数不是解。
d y 3 ( t ) d t = d ( 1 ) d t = 0 = y 3 ( t ) 2 − 1 t 2 + 2 t = 0. {\frac{dy_3(t)}{d t}}=\frac{d(1)}{dt}=0 = \frac{y_3(t)^{2}-1}{t^{2}+2t}=0. dtdy3(t)=dtd(1)=0=t2+2ty3(t)21=0.
因此,Bob给出的函数是方程的解。
给定一个函数,我们可以通过将其代入微分方程并检查左方是否与右方相同来测试它是否是一个解。这是微分方程的一个非常好的方面: 我们总是可以检查我们的答案。所以我们应该不会犯错。

初值问题与通解

当我们在实践中遇到微分方程时,它们通常带有初始条件。我们寻求给定方程的解,该方程在特定时间假定给定值。带有初始条件的微分方程称为初值问题。因此,通常的形式是
d y d t = f ( t , y ) ,    y ( t 0 ) = y 0 . {\frac{d y}{d t}}=f(t,y), \ \ y(t_0)=y_0. dtdy=f(t,y),  y(t0)=y0.
在这里,我们要寻找一个函数 y ( t ) y(t) y(t),它是微分方程的解,并且在时间 t 0 t_0 t0处假定值为 y 0 y_0 y0。通常,所讨论的特定时间是 t = 0 t = 0 t=0 (此后称为初始条件),但是可以指定任何其他时间。例如:
d y d t = 12 t 3 − 2 sin ⁡ t ,    y ( 0 ) = 3 , {\frac{d y}{d t}}=12t^3-2\sin t, \ \ y(0)=3, dtdy=12t32sint,  y(0)=3,
为一初值问题。注意到方程右端仅与自变量 t t t有关,可采用原函数的方法求解此问题。试想哪个函数的导数等于 12 t 3 − 2 sin ⁡ t 12t^3-2\sin t 12t32sint?它属于微积分理论中原函数的求解问题,我们可以通过积分此式:
∫ ( 12 t 3 − 2 sin ⁡ t ) d t = 3 t 4 + 2 cos ⁡ t + c , \int (12t^3-2\sin t) dt = 3t^4 + 2\cos t +c, (12t32sint)dt=3t4+2cost+c,
其中 c c c 为积分常数。因此,原方程的通解为以下形式:
y ( t ) = 3 t 4 + 2 cos ⁡ t + c . y(t) = 3t^4 + 2\cos t +c. y(t)=3t4+2cost+c.
利用初始条件 y ( 0 ) = 3 y(0)=3 y(0)=3 来确定 c c c
3 = y ( 0 ) = 3 ⋅ 0 4 + 2 cos ⁡ 0 + c = 0 + 2 ⋅ 1 + c = 2 + C ⇒ c = 1. 3=y(0) = 3\cdot 0^4 + 2\cos 0 +c = 0+2\cdot 1+c=2+C\Rightarrow c =1. 3=y(0)=304+2cos0+c=0+21+c=2+Cc=1.
因此,初值问题的解为 y ( t ) = 3 t 4 + 2 cos ⁡ t + 1. y(t) = 3t^4 + 2\cos t +1. y(t)=3t4+2cost+1.
y ( t ) = 3 t 4 + 2 cos ⁡ t + c . y(t) = 3t^4 + 2\cos t +c. y(t)=3t4+2cost+c.
称方程的通解。
变量分离方程的两种类型

变量分离方程

许多微分方程的解不能用已知函数表示,如多项式、指数或三角函数。然而,有一些特殊类型的微分方程,我们可以导出显式解,在本节中,我们讨论这些类型的微分方程之一。典型的一阶微分方程形式为
d y d t = f ( t , y ) . {\frac{d y}{d t}}=f(t,y). dtdy=f(t,y).
这个等式的右边通常同时涉及自变量t和因变量y (尽管有许多重要的例子,其中t或y都缺失)。如果函数 f ( t , y ) f (t,y) f(t,y)可以写为两个函数的乘积,则微分方程称为可分离的: 一个函数仅取决于 t t t,另一个函数仅取决于 y y y。即变量分离方程可写为以下形式
d y d t = g ( t ) h ( y ) . {\frac{d y}{d t}}=g(t)h(y). dtdy=g(t)h(y).
例如:方程 d y d t = y t . {\frac{d y}{d t}}=yt. dtdy=yt.显然为变量分离方程,而方程 d y d t = y + t . {\frac{d y}{d t}}=y+t. dtdy=y+t.则不是。有些方程需要进行化简变为变量分离方程,如:
d y d t = t + 1 t y + t {\frac{d y}{d t}}=\frac{t+1}{ty+t} dtdy=ty+tt+1
重写为
d y d t = t + 1 t y + t = ( t + 1 t ) ( 1 y + 1 ) . {\frac{d y}{d t}}=\frac{t+1}{ty+t}=\left(\frac{t+1}{t}\right)\left(\frac{1}{y+1}\right). dtdy=ty+tt+1=(tt+1)(y+11).
变量分离方程两种重要类型如下:
d y d t = g ( t ) {\frac{d y}{d t}}=g(t) dtdy=g(t)
d y d t = h ( y ) {\frac{d y}{d t}}=h(y) dtdy=h(y)
其中,第二种类型称为自治方程。应用中出现的许多最重要的一阶微分方程 (包括上一节中的所有模型) 都是自治的。例如,Logistic 方程
d y d t = k P ( 1 − P N ) {\frac{d y}{d t}}=kP\left(1-\frac{P}{N}\right) dtdy=kP(1NP)

如何求解变量分离方程?

为了找到可分离微分方程的显式解,我们使用了一种从微积分中熟悉的技术。为了说明该方法,考虑微分方程
d y d t = t y 2 . {\frac{d y}{d t}}=\frac{t}{y^2}. dtdy=y2t.
通过简单地将方程的两边相对于 t t t进行积分来解决该方程是一种诱惑。由此推出
∫ d y d t d t = ∫ t y 2 d t , \int\frac{d y}{d t} dt=\int\frac{t}{y^2}dt, dtdydt=y2tdt,
结果是
y ( t ) = ∫ t y 2 d t . y(t)=\int\frac{t}{y^2}dt. y(t)=y2tdt.
现在我们被困住了。我们不能求右边的积分,因为我们不知道函数 y ( t ) y(t) y(t)。事实上,这正是我们希望 找到的函数。我们只是用积分方程代替了微分方程。在尝试积分之前,我们需要对这个方程做一些事情。回归原微分方程
d y d t = t y 2 . {\frac{d y}{d t}}=\frac{t}{y^2}. dtdy=y2t.
我们首先做一些 “非正式” 代数运算,将这个方程重写为
y 2 d y = t d t . y^2 d y=tdt. y2dy=tdt.
也就是说,我们将两边乘以 y 2 d t y^2 dt y2dt。当然,通过乘以 d t dt dt来分割 d y / d t dy/dt dy/dt是没有意义的。但是,这应该使您想起微积分中称为 u u u替换的积分技术。我们发现这种替换正是我们正在做的。现在,将方程两边分别关与 y y y t t t积分。我们有
∫ y 2 d y = ∫ t d t . \int y^2 d y=\int tdt. y2dy=tdt.
由此得到
y 3 / 3 = t 2 / 2 + c . y^3/3=t^2/2+c. y3/3=t2/2+c.
从技术上讲,这个方程的两边都有一个积分常数,但是我们可以把它们放在一起,作为右边的一个常数 c c c。我们可以重写这个表达式为
y ( t ) = ( 3 t 2 / 2 + 3 c ) 1 / 3 . y(t)=\left(3t^2/2+3c\right)^{1/3}. y(t)=(3t2/2+3c)1/3.
由于 c c c是一个任意常数,我们可以将其更紧凑地写为
y ( t ) = ( 3 t 2 / 2 + k ) 1 / 3 . y(t)=\left(3t^2/2+k\right)^{1/3}. y(t)=(3t2/2+k)1/3.
其中 k k k 是任意常数。像往常一样,我们可以检查这个表达式确实是微分方程的解,所以尽管我们进行了可疑的分离,我们确实得到了很多解。请注意,此过程会产生许多微分方程的解。常数 k k k 的每个选择给出不同的解。

非正式代数运算中到底发生了什么?

如果你仔细阅读前面的例子,你可能会在某个时候变得紧张。将 d t dt dt视为变量是一个提示,实际上正在发生一些更复杂的事情。这是真实的故事。我们从一个可分离的方程式开始
d y d t = g ( t ) h ( y ) , {\frac{d y}{d t}}=g(t)h(y), dtdy=

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值