- 博客(34)
- 收藏
- 关注
原创 C++练习 二维数组的应用
超女有3个小组,每组有4名选手,请提供一个界面,输入每个超女的体重,然后,计算出每组的超女的平均体重和全部超女的平均体重。
2024-11-11 21:54:10 74
原创 C++练习 字符串反转
从界面上输入一个C风格的字符串,如果输入的是"abc",反转后"cba"。)反转的结果存放在另一字符串中。)原地反转,不借助其它的字符串。
2024-11-11 20:48:55 34
原创 C++练习 显示字符串中的字符
求字符串的长度可以利用上一题的成果,也可以直接用strlen()函数,关注性能的细节。)正序显示:a b c。)逆序显示:c b a。
2024-11-11 20:19:01 71
原创 C++练习 循环选数
用一个while循环,接受从键盘输入的整数,如果输入的整数不在1到100之间(包括1和100),认为无效,丢弃;如果输入的整数在1到100之间,则把每次输入的值累加起来;如果输入的整数为0,跳出循环。最后,显示有效数据的个数和总和。)输出1到100之间(包括1和100)的能整除5的数字。
2024-11-11 15:08:38 127
原创 C++练习 选出妃子、宫女和嬷嬷
如果是C风格的字符串 需要使用strcmp(const char *str1, const char *str2 )==0 表示完全相等)注:string sc;嬷嬷:1)年龄35-40岁;2)身高155-165cm;3)身材普通或者飞机场;宫女:1)年龄18-30岁;2)身高160-165cm;3)身材火辣或者普通;妃子:1)年龄18-25岁;2)身高165-178cm;在界面上输入超女数据后,按下列要求选出妃子、宫女和嬷嬷。)先输入超女全部的数据项,然后才进行选秀;)超女数据用结构体表示;
2024-11-11 09:22:38 487
原创 深刻理解预编译、编译、汇编和链接
这个阶段处理源代码文件中的预处理指令,如宏定义的展开(`#define`)、条件编译指令(`#ifdef`、`#ifndef`、`#endif`)、包含头文件(`#include`)以及删除多余的空格和注释。- 这里,`gcc` 首先对 `hello.c` 进行预编译,然后编译成汇编代码,接着汇编成目标文件,最后链接成最终的可执行文件 `hello`。- 预编译器(preprocessor)会将所有的宏替换为它们的定义,并将包含的头文件内容插入到源代码中相应的位置。`或`.obj`为扩展名。
2024-10-31 16:47:35 442
原创 Pycharm创建Conda虚拟环境时显示CondaHTTPErOT
原因:conda源出问题了,之前可以用,现在报错。然后重新创建虚拟环境就可以了嘻嘻...不用谢我。最好的解决方案:找到conda源,换源即可。),如没有打开隐藏项目选项。
2024-06-04 18:08:24 535
原创 ROS通信机制——服务通信
服务通信理论模型因为话题通信发的标准消息只有一部分(一个字符串、一个数字)但是服务通信有请求和响应两部分组成所以要先自定义srv。
2024-04-26 10:56:55 192
原创 STM32定时器预分频系数和自动重装载系数
预分配器:比如输入的是72MHZ的频率,(预分频系数为0)不分频的话就是一秒数72000000次,如果预分频系数为(72-1)则一秒数1000000次,即一微秒数一次。计数器从0开始数,到65535自动变为0,自动重装载系数可以自定义(0-65535),以上面那个例子,如果自动重装载系数为(1000-1),就变成了1毫秒。预分频器和计数器最大值都为65535(从0开始)
2024-03-16 17:37:19 2837
原创 基于STM32F103小车的PWM调速
因为我设置ARR=999,所以当Speed=100时,占空比为(100*10)/(999+1);此时速度最快,所以速度的调节范围为0-100,反转的话(-speed)即可。上述代码实现了小车速度为60(最大为100)正转的程序。可以根具自己的需求在while里面写对应的函数。2.GPIO初始化(PWM输出的口)下面是gtim.c(PWM初始化)1.PWM时钟和GPIO时钟使能。3.时基单元(PSC,ARR)1.电机GPIO端口初始化。第一步:PWM初始化。
2024-03-06 09:31:20 965 1
原创 前向传播算法
首先根据W的列数来判断有多少个神经元,W.shape[1]就是输出W矩阵的列数。循环遍历获得这层所有的神经元的输出a_out,以供下层输入。所谓前向传播就是也就是从左向右的算法。跟着吴恩达老师入门机器学习。每个神经元都会输出一个值。
2023-11-24 17:26:46 132 1
原创 np.array([1,2])与np.array([[1],[2]])与np.array([[1,2]])
np.array([[1,2]])是二维数组(矩阵),可以将他考虑为一个表格,表格第一行为数组[1,2]np.array([[1],[2]])是二维数组(矩阵),表格的第一行为[1],第二行为[2]np.array([1,2])是一维数组,相当于一条线上有1和2两个元素。
2023-11-24 16:22:51 1010 1
原创 机器学习:线性回归与逻辑回归
其中𝑎是学习率(learning rate),它决定了我们沿着能让代价函数下降程度最大的方向 向下迈出的步子有多大,在批量梯度下降中,我们每一次都同时让所有的参数减去学习速率 乘以代价函数的导数。目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(𝑥1, 𝑥1, . . . , 𝑥𝑛 )。如果选择的正则化参数 λ 过大,则会把所有的参数都最小化了,导致模型变成 ℎ𝜃 (𝑥) = 𝜃0,造成欠拟合。
2023-11-19 14:44:56 467 1
原创 吴恩达机器学习作业 线性回归
如果我们站在山坡上的这一点,你看一下周围,你会发现最佳的下山方向,你再看看周围,然后再一次想想,我应该从什么方向迈着小碎步下 山?然后你按照自己的判断又迈出一步,重复上面的步骤,从这个新的点,你环顾四周,并 决定从什么方向将会最快下山,然后又迈进了一小步,并依此类推,直到你接近局部最低点的位置。如果𝑎太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛,下一次迭代又移 动了一大步,越过一次,又越过一次,一次次越过最低点,直到你发现实际上离最低点越来越远,所以,如果𝑎太大,它会导致无法收敛,甚至发散。
2023-11-04 16:23:22 299 1
原创 视图与拷贝(.view&.copy)
视图(.view): c = a.view() c是a 的视图,可以理解为c是虚拟的,c里面没有内容,他只是将a的内容展示出来,但是它俩的地址不一样。改变c的值,a也会改变,但是改变c 的形状a 并不会改变。深拷贝:(.copy):完全是两个东西,只是借用内容,相当于在电脑上复制一个文件到其他地方,文件内容一样,但是地址不同,之后任意改变一个文件,另一个不会改变,相互独立。完全不拷贝:a与b共用同一个地址(b=a),a和b指的是同一个内容,只是叫法不一样,内容地址都一样,所以改变a,b也会变。
2023-11-02 20:51:30 490
原创 fatmat()
格式化浮点数:可以使用"格式化字符串"来控制浮点数的格式,例如控制小数点后的位数、显示符号、对齐方式等。在字符串中插入变量:可以使用"{}".format()方法将变量插入到字符串中。
2023-11-01 09:33:03 77 1
原创 concat与join
'inner'表示只保留两个DataFrame都有的行或列,'outer'表示保留两个DataFrame中所有的行或列,'left'表示保留左边的DataFrame中所有的行或列,'right'表示保留右边的DataFrame中所有的行或列。concat():连接两个DataFrame,两种方式行连接(axis=0)与列连接(axis=1)。列连接:axis=1 df = pd.concat([df1, df2],asix=1),行连接保留df1,df2的所有行,列有重复则取交集。
2023-10-31 10:15:35 495 3
原创 pycharm使用conda创建的虚拟环境时找不到python.exe
在anaconda软件的安装目录下选择condabin——>conda.bat。解决方案:可能是condaba版本不一样,新版本选不到.exe文件。问题:在创建的虚拟环境中没有找到python.exe文件。然后加载环境,就可以选择创建的虚拟环境了。
2023-10-30 11:28:56 7468 13
原创 groupby()、sort_index()、sort_values()
在默认情况下,pandas 创建的 DataFrame 对象有一个整数索引,从 0 开始递增。当我们对 DataFrame 进行分组、排序、重塑等操作时,索引可能会变得混乱,不再是连续的整数。():groupby() 是 pandas 库中的一个函数,用于根据一个或多个列的值将数据分组。sort_values(): pandas 库中的一个函数,用于对 DataFrame 或 Series 中的数据进行排序。reset_index():pandas 库中的一个函数,用于重置 DataFrame 的索引。
2023-10-29 17:55:30 345 2
原创 map与apply
describe 函数 (对数值):函数是 Pandas 库中的一个函数,用于对数据集进行统计描述。它提供了数据集的计数、平均值、标准差、最小值、四分位数和最大值等描述性统计信息。map()是设计用来对 Series应用一个函数,而apply()是设计用来对 DataFrame 的行或列应用一个函数。apply():可以接受两个参数:一个函数和一个轴参数(行还是列)
2023-10-29 11:50:30 60 1
原创 iloc与loc的区别
其中row_indices和column_indices是你要选择的行和列的整数索引。set_index("title"):将"title"列设置为DataFrame的索引。,其中row_labels和column_labels是你要选择的行和列的标签。iloc:是基于整数位置的数据选择方法(使用python stdlib)loc:是基于标签的数据选择方法(无切片)
2023-10-27 18:23:23 84 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人