【Datawhale深入浅出Pytorch】Task01 Pytorch安装和基础

今天正式开始期待已久的组队学习《深入浅出PyTorch》航海之旅咯~ 

【课程链接】 
https://datawhalechina.github.io/thorough-pytorch/index.html 
【B站视频】 
https://www.bilibili.com/video/BV1L44y1472Z


目录

第一章 PyTorch的简介和安装

Anaconda的安装

Step 1:安装Anaconda/miniconda

Step 2:检验是否安装成功

Step 3:创建虚拟环境

Step 4:换源

安装PyTorch

PyTorch相关资源

第二章:PyTorch基础知识

张量

创建tensor

张量的操作

加法操作:

索引操作:(类似于numpy)

广播机制

自动求导

并行计算简介

为什么要做并行计算

为什么需要CUDA

常见的并行的方法:

网络结构分布到不同的设备中(Network partitioning)

同一层的任务分布到不同数据中(Layer-wise partitioning)

不同的数据分布到不同的设备中,执行相同的任务(Data parallelism)


第一章 PyTorch的简介和安装

之前有自己跟着网上教程手忙脚乱安装过Pytorch,第一章跟着步骤又捋了一遍,图为个人电脑截图。

Anaconda的安装

Step 1:安装Anaconda/miniconda

登陆Anaconda | Individual Edition,选择相应系统DownLoad

Step 2:检验是否安装成功

 

Step 3:创建虚拟环境

Linux在终端(Ctrl+Alt+T)进行,Windows在Anaconda Prompt进行

查看现存虚拟环境:

conda env list  

创建虚拟环境:

conda create -n env_name python==version

 

 

 

 

修改虚拟环境名字和版本号即可

注意:warning忽略。Python版本选择3.6-3.8,版本过高会导致相关库不适配。

删除虚拟环境命令

conda remove -n env_name --all

激活环境命令

conda activate env_name

退出当前环境

conda deactivate

Step 4:换源

pip换源

 查看显卡

 查看对应版本的CUDA

onda换源(清华源)官方换源帮助

Windows系统:

TUNA 提供了 Anaconda 仓库与第三方源的镜像,各系统都可以通过修改用户目录下的 .condarc 文件。Windows 用户无法直接创建名为 .condarc 的文件,可先执行conda config --set show_channel_urls yes生成该文件之后再修改。

完成这一步后,我们需要修改C:\Users\User_name\.condarc这个文件,打开后将文件里原始内容删除,将下面的内容复制进去并保存。

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

这一步完成后,我们需要打开Anaconda Prompt 运行 conda clean -i 清除索引缓存,保证用的是镜像站提供的索引。

安装PyTorch

登录PyTorch官网

我们需要结合自己情况选择命令并复制下来,然后使用conda下载或者pip下载(建议conda安装)

打开Terminal,输入conda activate env_name,激活环境并切换到环境下面,我们就可以进行PyTorch的安装了。

 如果我们使用的Anaconda Prompt进行下载的话,我们需要先通过conda activate env_name,激活我们的虚拟环境中去,再输入命令。

PyTorch相关资源

PyTorch之所以被越来越多的人使用,不仅在于其完备的教程,还受益于许多相关的资源,在这里,Datawhale列举了相关的优质资源希望能帮助到各位同学。

  1. Awesome-pytorch-list:目前已获12K Star,包含了NLP,CV,常见库,论文实现以及Pytorch的其他项目。

  2. PyTorch官方文档:官方发布的文档,十分丰富。

  3. Pytorch-handbook:GitHub上已经收获14.8K,pytorch手中书。

  4. PyTorch官方社区:在这里你可以和开发pytorch的人们进行交流。

第二章:PyTorch基础知识

张量

核心是一个数据容器,用多维数组来理解

在PyTorch中, torch.Tensor存储和变换数据的主要工具。 Tensor 和NumPy的多维数组非常类似(补充NumPy知识)

创建tensor

  • 通过torch.rand()的方法,构造一个随机初始化的矩阵:

import torch
x = torch.rand(4, 3) 
print(x)

tensor([[0.7569, 0.4281, 0.4722],
        [0.9513, 0.5168, 0.1659],
        [0.4493, 0.2846, 0.4363],
        [0.5043, 0.9637, 0.1469]])
  • 通过torch.zeros()构造一个矩阵全为 0,并且通过dtype设置数据类型为 long。

import torch
x = torch.zeros(4, 3, dtype=torch.long)
print(x)

tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])
  • 我们可以通过torch.tensor()直接使用数据,构造一个张量:

import torch
x = torch.tensor([5.5, 3]) 
print(x)

tensor([5.5000, 3.0000])
  • 基于已经存在的 tensor,创建一个 tensor :

import torch
x = x.new_ones(4, 3, dtype=torch.double) # 创建一个新的tensor,返回的tensor默认具有相同的 torch.dtype和torch.device
# 也可以像之前的写法 x = torch.ones(4, 3, dtype=torch.double)
print(x)
x = torch.randn_like(x, dtype=torch.float)
# 重置数据类型
print(x)
# 结果会有一样的size
# 获取它的维度信息
print(x.size())
print(x.shape)

tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
tensor([[ 2.7311, -0.0720,  0.2497],
        [-2.3141,  0.0666, -0.5934],
        [ 1.5253,  1.0336,  1.3859],
        [ 1.3806, -0.6965, -1.2255]])
torch.Size([4, 3])
torch.Size([4, 3])

 返回的torch.Size其实是一个tuple,⽀持所有tuple的操作。

函数

功能

Tensor(sizes)

基础构造函数

tensor(data)

类似于np.array

ones(sizes)

全1

zeros(sizes)

全0

eye(sizes)

对角为1,其余为0

arange(s,e,step)

从s到e,步长为step

linspace(s,e,steps)

从s到e,均匀分成step份

rand/randn(sizes)

rand是[0,1)均匀分布;randn是服从N(0,1)的正态分布

normal(mean,std)

正态分布(均值为mean,标准差是std)

randperm(m)

随机排列

张量的操作

  • 加法操作:

import torch
# 方式1
y = torch.rand(4, 3) 
print(x + y)

# 方式2
print(torch.add(x, y))

# 方式3 提供一个输出 tensor 作为参数
# 这里的 out 不需要和真实的运算结果保持维数一致,但是会有警告提示!
result = torch.empty(5, 3) 
torch.add(x, y, out=result) 
print(result)

# 方式4 in-place
y.add_(x) 
print(y)
tensor([[ 2.8977,  0.6581,  0.5856],
        [-1.3604,  0.1656, -0.0823],
        [ 2.1387,  1.7959,  1.5275],
        [ 2.2427, -0.3100, -0.4826]])
tensor([[ 2.8977,  0.6581,  0.5856],
        [-1.3604,  0.1656, -0.0823],
        [ 2.1387,  1.7959,  1.5275],
        [ 2.2427, -0.3100, -0.4826]])
tensor([[ 2.8977,  0.6581,  0.5856],
        [-1.3604,  0.1656, -0.0823],
        [ 2.1387,  1.7959,  1.5275],
        [ 2.2427, -0.3100, -0.4826]])
tensor([[ 2.8977,  0.6581,  0.5856],
        [-1.3604,  0.1656, -0.0823],
        [ 2.1387,  1.7959,  1.5275],
        [ 2.2427, -0.3100, -0.4826]])
  • 索引操作:(类似于numpy)

需要注意的是:索引出来的结果与原数据共享内存,修改一个,另一个会跟着修改。如果不想修改,可以考虑使用copy()等方法

# 取第二列
print(x[:, 1]) 
tensor([-0.0720,  0.0666,  1.0336, -0.6965])
y = x[0,:]
y += 1
print(y)
print(x[0, :]) # 源tensor也被改了了
tensor([3.7311, 0.9280, 1.2497])
tensor([3.7311, 0.9280, 1.2497])

改变大小:如果你想改变一个 tensor 的大小或者形状,你可以使用 torch.view:

x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # -1是指这一维的维数由其他维度决定
print(x.size(), y.size(), z.size())
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

注意 view() 返回的新tensor与源tensor共享内存(其实是同一个tensor),也即更改其中的一个,另 外一个也会跟着改变。(顾名思义,view仅仅是改变了对这个张量的观察⻆度)

x += 1
print(x)
print(y) # 也加了了1
tensor([[ 1.3019,  0.3762,  1.2397,  1.3998],
        [ 0.6891,  1.3651,  1.1891, -0.6744],
        [ 0.3490,  1.8377,  1.6456,  0.8403],
        [-0.8259,  2.5454,  1.2474,  0.7884]])
tensor([ 1.3019,  0.3762,  1.2397,  1.3998,  0.6891,  1.3651,  1.1891, -0.6744,
         0.3490,  1.8377,  1.6456,  0.8403, -0.8259,  2.5454,  1.2474,  0.7884])

所以如果我们想返回一个真正新的副本(即不共享内存)该怎么办呢?Pytorch还提供了一 个 reshape() 可以改变形状,但是此函数并不能保证返回的是其拷贝,所以不推荐使用。推荐先用 clone 创造一个副本然后再使用 view 。

注意:使用 clone 还有一个好处是会被记录在计算图中,即梯度回传到副本时也会传到源 Tensor 

如果你有一个元素 tensor ,使用 .item() 来获得这个 value

import torch
x = torch.randn(1) 
print(type(x)) 
print(type(x.item()))
<class 'torch.Tensor'>
<class 'float'>

PyTorch中的 Tensor 支持超过一百种操作,包括转置、索引、切片、数学运算、线性代数、随机数等等,可参考官方文档。

广播机制

当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。

x = torch.arange(1, 3).view(1, 2)
print(x)
y = torch.arange(1, 4).view(3, 1)
print(y)
print(x + y)
tensor([[1, 2]])
tensor([[1],
        [2],
        [3]])
tensor([[2, 3],
        [3, 4],
        [4, 5]])

由于 x 和 y 分别是1行2列和3行1列的矩阵,如果要计算 x + y ,那么 x 中第一行的2个元素被广播 (复制)到了第二行和第三行,⽽ y 中第⼀列的3个元素被广播(复制)到了第二列。如此,就可以对2 个3行2列的矩阵按元素相加。

自动求导

PyTorch 中,所有神经网络的核心是 autograd 包。autograd包为张量上的所有操作提供了自动求导机制。它是一个在运行时定义 ( define-by-run )的框架,这意味着反向传播是根据代码如何运行来决定的,并且每次迭代可以是不同的。

torch.Tensor 是这个包的核心类。如果设置它的属性 .requires_grad 为 True,那么它将会追踪对于该张量的所有操作。当完成计算后可以通过调用 .backward(),来自动计算所有的梯度。这个张量的所有梯度将会自动累加到.grad属性。

注意:在 y.backward() 时,如果 y 是标量,则不需要为 backward() 传入任何参数;否则,需要传入一个与 y 同形的Tensor。

要阻止一个张量被跟踪历史,可以调用.detach()方法将其与计算历史分离,并阻止它未来的计算记录被跟踪。为了防止跟踪历史记录(和使用内存),可以将代码块包装在 with torch.no_grad(): 中。在评估模型时特别有用,因为模型可能具有 requires_grad = True 的可训练的参数,但是我们不需要在此过程中对他们进行梯度计算。

还有一个类对于autograd的实现非常重要:FunctionTensor  Function 互相连接生成了一个无环图 (acyclic graph),它编码了完整的计算历史。每个张量都有一个.grad_fn属性,该属性引用了创建 Tensor 自身的Function(除非这个张量是用户手动创建的,即这个张量的grad_fn是 None )。下面给出的例子中,张量由用户手动创建,因此grad_fn返回结果是None。

from __future__ import print_function
import torch
x = torch.randn(3,3,requires_grad=True)
print(x.grad_fn)
None

如果需要计算导数,可以在 Tensor 上调用 .backward()。如果 Tensor 是一个标量(即它包含一个元素的数据),则不需要为 backward() 指定任何参数,但是如果它有更多的元素,则需要指定一个gradient参数,该参数是形状匹配的张量。

创建一个张量并设置requires_grad=True用来追踪其计算历史

x = torch.ones(2, 2, requires_grad=True)
print(x)
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)

对这个张量做一次运算:

y = x**2
print(y)
tensor([[1., 1.],
        [1., 1.]], grad_fn=<PowBackward0>)

y是计算的结果,所以它有grad_fn属性。

print(y.grad_fn)
<PowBackward0 object at 0x000001CB45988C70>

对 y 进行更多操作

z = y * y * 3
out = z.mean()

print(z, out)
tensor([[3., 3.],
        [3., 3.]], grad_fn=<MulBackward0>) tensor(3., grad_fn=<MeanBackward0>)

.requires_grad_(...) 原地改变了现有张量的requires_grad标志。如果没有指定的话,默认输入的这个标志是 False

a = torch.randn(2, 2) # 缺失情况下默认 requires_grad = False
a = ((a * 3) / (a - 1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b = (a * a).sum()
print(b.grad_fn)
False
True
<SumBackward0 object at 0x000001CB4A19FB50>

梯度

现在开始进行反向传播,因为 out 是一个标量,因此out.backward() out.backward(torch.tensor(1.)) 等价。

out.backward()

输出导数 d(out)/dx

print(x.grad)

tensor([[3., 3.],
        [3., 3.]])

注意:grad在反向传播过程中是累加的(accumulated),这意味着每一次运行反向传播,梯度都会累加之前的梯度,所以一般在反向传播之前需把梯度清零。

# 再来反向传播⼀一次,注意grad是累加的
out2 = x.sum()
out2.backward()
print(x.grad)

out3 = x.sum()
x.grad.data.zero_()
out3.backward()
print(x.grad)
tensor([[4., 4.],
        [4., 4.]])
tensor([[1., 1.],
        [1., 1.]])

现在我们来看一个雅可比向量积的例子:

x = torch.randn(3, requires_grad=True)
print(x)

y = x * 2
i = 0
while y.data.norm() < 1000:
    y = y * 2
    i = i + 1
print(y)
print(i)


tensor([-0.9332,  1.9616,  0.1739], requires_grad=True)
tensor([-477.7843, 1004.3264,   89.0424], grad_fn=<MulBackward0>)
8

在这种情况下,不再是标量。torch.autograd 不能直接计算完整的雅可比矩阵,但是如果我们只想要雅可比向量积,只需将这个向量作为参数传给 backward:

v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)

print(x.grad)
tensor([5.1200e+01, 5.1200e+02, 5.1200e-02])
也可以通过将代码块包装在 with torch.no_grad(): 中,来阻止 autograd 跟踪设置了.requires_grad=True的张量的历史记录。

print(x.requires_grad)
print((x ** 2).requires_grad)

with torch.no_grad():
    print((x ** 2).requires_grad)
True
True
False

如果我们想要修改 tensor 的数值,但是又不希望被 autograd 记录(即不会影响反向传播), 那么我们可以对 tensor.data 进行操作。

x = torch.ones(1,requires_grad=True)

print(x.data) # 还是一个tensor
print(x.data.requires_grad) # 但是已经是独立于计算图之外

y = 2 * x
x.data *= 100 # 只改变了值,不会记录在计算图,所以不会影响梯度传播

y.backward()
print(x) # 更改data的值也会影响tensor的值 
print(x.grad)
tensor([1.])
False
tensor([100.], requires_grad=True)
tensor([2.])

并行计算简介

在利用PyTorch做深度学习的过程中,可能会遇到数据量较大无法在单块GPU上完成,或者需要提升计算速度的场景,这时就需要用到并行计算。本节让我们来简单地了解一下并行计算的基本概念和主要实现方式,具体的内容会在课程的第二部分详细介绍。

为什么要做并行计算

我们学习PyTorch的目的就是可以编写我们自己的框架,来完成特定的任务。可以说,在深度学习时代,GPU的出现让我们可以训练的更快,更好。所以,如何充分利用GPU的性能来提高我们模型学习的效果,这一技能是我们必须要学习的。这一节,我们主要讲的就是PyTorch的并行计算。PyTorch可以在编写完模型之后,让多个GPU来参与训练。

为什么需要CUDA

CUDA是我们使用GPU的提供商——NVIDIA提供的GPU并行计算框架。对于GPU本身的编程,使用的是CUDA语言来实现的。但是,在我们使用PyTorch编写深度学习代码时,使用的CUDA又是另一个意思。在PyTorch使用 CUDA表示要开始要求我们的模型或者数据开始使用GPU了。

在编写程序中,当我们使用了 .cuda 时,其功能是让我们的模型或者数据迁移到GPU当中,通过GPU开始计算。

注:

  1. 我们使用GPU时使用的是.cuda而不是使用.gpu。这是因为当前GPU的编程接口采用CUDA,但是市面上的GPU并不是都支持CUDA,只有部分NVIDIA的GPU才支持,AMD的GPU编程接口采用的是OpenGL,在现阶段PyTorch并不支持。

  2. 数据在GPU和CPU之间进行传递时会比较耗时,应当尽量避免。

  3. GPU运算很快,但是在使用简单的操作时,我们应该尽量使用CPU去完成。

  4. 当我们的服务器上有多个GPU,我们应该指明我们使用的GPU是哪一块,如果我们不设置的话,tensor.cuda()方法会默认将tensor保存到第一块GPU上,等价于tensor.cuda(0),这将会导致爆出out of memory的错误。我们可以通过以下两种方式继续设置:

     #设置在文件最开始部分
    import os
    os.environ["CUDA_VISIBLE_DEVICE"] = "2" # 设置默认的显卡
    
     CUDA_VISBLE_DEVICE=0,1 python train.py # 使用0,1两块GPU

常见的并行的方法:

网络结构分布到不同的设备中(Network partitioning)

在刚开始做模型并行的时候,这个方案使用的比较多。其中主要的思路是,将一个模型的各个部分拆分,然后将不同的部分放入到GPU来做不同任务的计算。其架构如下:

这里遇到的问题就是,不同模型组件在不同的GPU上时,GPU之间的传输就很重要,对于GPU之间的通信是一个考验。但是GPU的通信在这种密集任务中很难办到,所以这个方式慢慢淡出了视野。

同一层的任务分布到不同数据中(Layer-wise partitioning)

第二种方式就是,同一层的模型做一个拆分,让不同的GPU去训练同一层模型的部分任务。其架构如下:

这样可以保证在不同组件之间传输的问题,但是在我们需要大量的训练,同步任务加重的情况下,会出现和第一种方式一样的问题。

不同的数据分布到不同的设备中,执行相同的任务(Data parallelism)

第三种方式有点不一样,它的逻辑是,我不再拆分模型,我训练的时候模型都是一整个模型。但是我将输入的数据拆分。所谓的拆分数据就是,同一个模型在不同GPU中训练一部分数据,然后再分别计算一部分数据之后,只需要将输出的数据做一个汇总,然后再反传。其架构如下:

这种方式可以解决之前模式遇到的通讯问题。

现在的主流方式是数据并行的方式(Data parallelism)

要学习的还有很多,不懂的继续搞懂,争取跟上大部队,加油!

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值