【Datawhale组队学习深度强化学习】Task3深度学习基础

  本次学习的相关资料:

【教程】

蘑菇书EasyRL

Datawhale

GitHub - datawhalechina/joyrl-book

【学习者手册】

https://mp.weixin.qq.com/s/pwWg0w1DL2C1i_Hs3SZedg

第六章 深度学习基础 (datawhalechina.github.io)

通俗解释:

强化学习与深度学习的关系

强化学习与深度学习都是机器学习的一部分,但它们各自有不同的应用和特点。我们可以用一个比喻来帮助理解它们之间的关系:
想象一下,你是一个正在学习新技能的学生。深度学习可以比作是一种“自学”方式,你需要大量的书籍(数据)来学习。你通过阅读这些书籍,理解其中的内容,并能够回答与这些书籍相关的问题。这种学习方式非常适合于需要识别模式或类别的任务,比如识别图片中的猫或狗,或者翻译一种语言到另一种语言。
强化学习则更像是一种“实践”方式,你通过实际操作来学习。你有一个目标,比如学会骑自行车,但是你没有具体的指导手册,只能通过尝试和错误来学习。每次尝试,你会得到一个反馈:如果你保持平衡,你会得到正面的反馈;如果你摔倒了,你会得到负面的反馈。你根据这些反馈来调整你的行为,以便在下一次尝试中做得更好。强化学习非常适合于需要做出决策序列的任务,比如玩游戏、机器人导航或自动驾驶汽车。
现在,如果我们把深度学习加入到强化学习中,就像是你有一个教练(深度学习)在你实践(强化学习)的时候帮助你。教练会观察你的动作,并根据他的经验给你建议,这些建议可以帮助你更快地学习。这种结合了深度学习的强化学习被称为深度强化学习,它是目前人工智能研究中最激动人心的领域之一,因为它可以让机器在复杂的环境中通过试错来学习如何执行任务。
总结来说,深度学习是一种通过大量数据学习的方式,而强化学习是一种通过实际操作和反馈学习的方式。当它们结合起来时,我们可以创建出能够通过实践和经验解决复杂问题的智能系统。
 

线性回归

线性回归是统计学和机器学习中的一种方法,用来分析两个或多个变量之间的关系。我们可以用一个简单的例子来帮助学生理解线性回归的概念:
想象一下,你是一个学生,你注意到当你每天学习的时间增加时,你的考试分数也会提高。你想要找出学习和考试分数之间的关系。
1. **收集数据**:你记录了每天学习的小时数和对应的考试分数。
2. **画图分析**:你把这些数据画在一个坐标系中,横轴表示学习时间,纵轴表示考试分数。
3. **寻找最佳拟合线**:你想要找到一条直线,它能够最好地穿过这些点,这样你就可以根据学习时间来预测考试分数。这条直线就是线性回归线。
4. **预测分数**:一旦你有了这条直线,如果你想知道某一天学习了多少小时后可以得到特定的分数,你只需要在直线上找到对应的学习时间。
线性回归的“线性”指的是数学上的直线关系。在这个例子中,线性回归假设考试分数和学习时间之间存在直线关系。这种关系可以用一个方程来表示,比如 `分数 = a * 学习时间 + b`,其中 `a` 是直线的斜率,表示每多学习一小时,分数提高的数量,`b` 是直线在纵轴上的截距,表示即使不学习也会有的基本分数。
线性回归不仅用于分析两个变量之间的关系,还可以用于更复杂的情况,比如多个自变量(学习时间、睡眠时间、饮食习惯等)和一个因变量(考试分数)之间的关系。在这种情况下,线性回归会寻找一个多维的线性关系,而不是简单的二维直线。
 

梯度下降

梯度下降是一种优化算法,用于找到函数的最小值。我们可以用一个爬山的小故事来帮助学生理解梯度下降的概念:
想象一下,你是一个登山者,你的目标是找到一座山的最低点。由于山上浓雾弥漫,你无法直接看到山顶和山谷,只能通过感觉地面的坡度来找到下山的路。
1. **站在山顶**:一开始,你随机选择了一个位置作为起点(这可能是函数的一个随机初始值)。
2. **感受坡度**:你检查你所站的位置,感受哪个方向的坡度最陡(这相当于计算函数的梯度,即函数在各个方向上的变化率)。
3. **选择方向**:你决定沿着最陡的方向向下走一步(这相当于在梯度的方向上迈出一步,因为梯度指向函数增长最快的方向,而我们的目标是找到函数的最小值,所以我们要反着走)。
4. **重复步骤**:你重复这个过程,每次都站在新的位置,感受坡度,然后沿着最陡的方向向下走一步。随着时间的推移,你希望越来越接近山谷(函数的最小值)。
在这个故事中,山的形状代表了我们要优化的函数,而你的位置代表了函数的当前值。梯度下降的目标是通过迭代地沿着梯度的反方向迈出小步,最终到达函数的最小值。
在机器学习中,梯度下降常用于训练模型,比如线性回归、神经网络等。在这些模型中,我们需要最小化一个称为损失函数的值,这个损失函数衡量了模型预测值与实际值之间的差异。通过梯度下降,我们可以找到一组模型参数,使得损失函数的值最小,从而训练出更好的模型。
 

逻辑回归

逻辑回归是一种统计方法,用于预测一个事件发生的概率。它是一种特殊的线性回归,用于处理分类问题,特别是二分类问题(即只有两个可能的结果)。我们可以用一个简单的例子来帮助学生理解逻辑回归的概念:
想象一下,你是一个学生,你想要预测明天是否会下雨。你观察到,当云量多的时候,下雨的可能性更高。你可以使用逻辑回归来建立一个模型,根据云量来预测下雨的概率。
1. **收集数据**:你收集了过去的天气数据,包括云量和是否下雨的信息。
2. **建立模型**:你使用逻辑回归建立一个模型,这个模型接受云量作为输入,输出下雨的概率。逻辑回归使用一个叫做逻辑函数(Logistic Function)的数学函数来转换云量与下雨概率之间的关系。
3. **预测概率**:一旦模型建立好了,如果你观察到明天的云量,你可以使用模型来预测下雨的概率。
逻辑回归的“逻辑”来自于逻辑函数,它是一种“S”型曲线,可以将任何实数输入映射到0和1之间的概率。逻辑函数的输出可以解释为某个事件发生的概率。例如,如果逻辑函数的输出是0.75,这意味着给定的输入条件下,事件发生的概率是75%。
逻辑回归在医学、金融、社会科学等多个领域都有应用。例如,医生可能使用逻辑回归来预测患者患某种疾病的概率,金融分析师可能使用它来预测股票价格上涨的概率,社会科学家可能使用它来预测人们投票给某个候选人的概率。
总结来说,逻辑回归是一种帮助我们从数据中学习,并预测分类问题概率的方法。它通过建立一个基于逻辑函数的模型,将输入变量与输出的概率联系起来。
 

全连接网络

全连接网络是神经网络的一种类型,它在每一层都与上一层的每一个神经元相连接。我们可以用一个图书馆的比喻来帮助学生理解全连接网络的概念:
想象一下,你是一个图书管理员,你的工作是根据书的封面、标题和摘要来分类书籍。图书馆有很多书架,每个书架代表神经网络中的一层。在全连接网络中,每个书架(层)上的书(神经元)都与上一个书架上的每本书(神经元)相连。
1. **第一层(输入层)**:当你收到一本新书时,你会看封面、标题和摘要(输入特征),然后决定把它放在哪个书架上。这就像是神经网络的输入层,它接收外部信息。
2. **隐藏层**:书架上的书代表隐藏层中的神经元。每本书(神经元)都包含了上一个书架(上一层)上的书(神经元)的信息。图书管理员(神经网络)通过比较这些信息来决定如何分类新书。
3. **最后一层(输出层)**:最后一个书架上的书(输出层中的神经元)代表了最终的分类结果。例如,如果一本书被放在“科幻”书架上,那么网络就预测这本书属于科幻类别。
在全连接网络中,每个神经元都与前一层的所有神经元相连,这意味着信息可以从一个层传递到下一个层的任何神经元。这种结构使得全连接网络能够学习输入和输出之间的复杂关系。
全连接网络在图像识别、语音识别和其他许多机器学习任务中都有应用。它们是深度学习的基础,尽管它们在某些应用中可能不如卷积神经网络(CNN)或循环神经网络(RNN)高效,但它们在处理表格数据或进行简单的分类任务时仍然非常有用。
总结来说,全连接网络是一种神经网络,其中每一层的每个神经元都与前一层的所有神经元相连。这种结构使得网络能够学习输入和输出之间的复杂关系,并在各种机器学习任务中发挥作用。
 

卷积神经网络

卷积神经网络(Convolutional Neural Network,简称CNN)是一种特殊的神经网络,它在图像识别、物体检测和视频分析等视觉任务中表现出色。我们可以用一个漫画书的比喻来帮助学生理解卷积神经网络的概念:
想象一下,你是一个漫画书艺术家,你的工作是绘制和识别漫画中的角色和场景。漫画书由许多页组成,每一页都充满了细节。卷积神经网络就像是你用来识别这些细节的工具。
1. **像素点**:漫画书中的每个小格子(像素点)都包含了颜色和形状信息。在卷积神经网络中,这些像素点就是输入数据,即图像。
2. **滤波器(卷积核)**:你有一套特殊的放大镜(滤波器),每个放大镜只能看到漫画书的一部分细节,比如人物的轮廓、眼睛或背景。这些放大镜在神经网络中称为卷积核,它们可以识别图像中的特定特征。
3. **卷积层**:你用这些放大镜逐页扫描漫画书,每次只关注一个细节。在卷积神经网络中,这相当于卷积层,它通过卷积核在图像上滑动,识别并提取特征。
4. **池化层**:为了简化信息,你可能会将几个连续的格子合并成一个更大的格子,只保留最显著的细节。在卷积神经网络中,这称为池化层,它减小了数据的尺寸,同时保留了重要的信息。
5. **全连接层**:最后,你将所有识别出的细节组合起来,决定这一页漫画的主题或场景。在卷积神经网络中,全连接层将这些提取的特征转换成最终的输出,比如识别出的物体类别。
卷积神经网络之所以有效,是因为它模拟了人类的视觉系统,能够识别图像中的局部特征,并逐步构建对整个图像的理解。这种结构使得卷积神经网络在处理图像和视频数据时非常高效。
总结来说,卷积神经网络是一种特殊的神经网络,它通过模拟人类的视觉系统来识别图像中的细节和特征。它由卷积层、池化层和全连接层组成,能够有效地处理图像识别和其他视觉任务。
 

 循环神经网络

循环神经网络(Recurrent Neural Network,简称RNN)是一种特殊的神经网络,它在处理序列数据方面表现出色,例如语言、时间序列数据或音频。我们可以用一个写作任务的比喻来帮助学生理解循环神经网络的概念:
想象一下,你是一个作家,正在写一个故事。故事的每个句子都建立在前面句子所提供的信息之上。循环神经网络就像是你用来编写和记忆故事的方法。
1. **句子和单词**:在故事中,每个句子都是由一系列的单词组成,每个单词都携带一定的信息。在循环神经网络中,这些单词就像是序列数据中的元素,例如文本中的单词或时间序列数据中的点。
2. **记忆**:你写故事的时候,需要记住前面写了什么,这样你才能根据上下文来写接下来的内容。循环神经网络也有这样的“记忆”,它能够记住之前处理过的信息,并使用这些信息来影响后续的输出。
3. **循环单元**:循环神经网络中的循环单元(如LSTM或GRU单元)就像是你的大脑,它决定了哪些信息需要记住,哪些信息可以被遗忘,以及如何使用这些信息来生成新的内容。
4. **顺序处理**:写故事时,你是按照从开头到结尾的顺序来写的。同样,循环神经网络也是按照序列的顺序来处理数据,每个时间点的输出都依赖于之前时间点的信息。
5. **应用**:循环神经网络可以用于许多任务,比如语言翻译、语音识别或预测股票价格。在语言翻译中,网络读取源语言的句子,并逐词生成目标语言的翻译;在语音识别中,网络听取音频信号,并逐帧生成文字转录;在股票价格预测中,网络查看历史价格,并预测未来的价格走势。
总结来说,循环神经网络是一种能够处理序列数据的神经网络,它通过“记忆”之前的信息来影响后续的处理。这种结构使得循环神经网络在处理语言、时间序列和其他序列数据时非常有效。
 

  • 8
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值