【数字通信】数字基带传输

数字基带信号与数字基带系统

数字基带信号:占据的频谱从零频或很低频率开始
数字基带传输系统:数字基带信号不经载波调制直接传输,不含调制解调器(调制解调过程)


数字基带信号的波形

以矩形脉冲为例

不归零波形(NRZ)

  • 单极性波形(“0"和"1”–零电平和正电平)
  • 双极性波形(使用负电平和正电平来表示,无直流分量)

归零波形(RZ)

可以提取定时信息,占用两倍带宽

  • 单极性归零波形
  • 双极性归零波形

数字基带信号的通式表示

s ( t ) = ∑ − ∞ ∞ a n g ( t − n T B ) = ∑ − ∞ ∞ s n ( t ) s(t)=\sum_{-\infty}^{\infty}a_ng(t-nT_B)=\sum_{-\infty}^{\infty}s_n(t) s(t)=ang(tnTB)=sn(t)
a n a_n an为电平值, n n n代表当前码元, T B T_B TB为当前码元持续时间, g g g为码元对应的脉冲波形


数字基带信号的频谱特性

频谱分析的作用

  • 确定信号的需要占用的带宽
  • 获得信号谱中的直流分量、位定时分量

功率谱的确定

  • 维纳辛钦公式
  • 直接推导
    s ( t ) s(t) s(t)分解成稳态波 v ( t ) v(t) v(t)和交变波 u ( t ) u(t) u(t) s ( t ) = v ( t ) + u ( t ) = ∑ n = − ∞ ∞ s n ( t ) s(t)=v(t)+u(t)=\sum_{n=-\infty}^{\infty}s_n(t) s(t)=v(t)+u(t)=n=sn(t)
    二进制码元 s n ( t ) = { g 1 ( t − n T B ) P 1 = P g 2 ( t − n T B ) P 2 = 1 − P s_n(t)=\begin{cases}g_1(t-nT_B)\quad P_1=P\\g_2(t-nT_B)\quad P_2=1-P\end{cases} sn(t)={g1(tnTB)P1=Pg2(tnTB)P2=1P

稳态波 v ( t ) v(t) v(t)

其稳态波码元 v n ( t ) v_n(t) vn(t) g 1 ( t ) g_1(t) g1(t) g 2 ( t ) g_2(t) g2(t)的加权平均值

稳态波 v ( t ) v(t) v(t) s ( t ) s(t) s(t)的统计平均分量(均值)

v ( t ) = ∑ n = − ∞ ∞ v n ( t ) = ∑ n = − ∞ ∞ [ P g 1 ( t − n T B ) + ( 1 − P ) g 2 ( t − n T B ) ] v(t)=\sum_{n=-\infty}^{\infty}v_n(t)=\sum_{n=-\infty}^{\infty}[Pg_1(t-nT_B)+(1-P)g_2(t-nT_B)] v(t)=n=vn(t)=n=[Pg1(tnTB)+(1P)g2(tnTB)]
引理:周期信号功率谱密度与傅里叶系数的关系
P ( f ) = ∑ n = − ∞ ∞ ∣ C ( f ) ∣ 2 δ ( f − n f 0 ) P(f)=\sum_{n=-\infty}^{\infty}|C(f)|^2\delta(f-nf_0) P(f)=n=C(f)2δ(fnf0)

周期信号 v ( t ) v(t) v(t)展开成傅里叶级数 v ( t ) = ∑ m = − ∞ ∞ C m e j 2 π m f B t v(t)=\sum_{m=-\infty}^{\infty}C_me^{j2\pi mf_Bt} v(t)=m=Cmej2πmfBt
这里用m而不是n一是与v(t)的周期表达式中的n区分开(实际上没有用到)

在计算时为了后面直接使用 G ( m f B ) G(mf_B) G(mfB)的傅里叶变换表示方便,选取 n = 0 n=0 n=0的周期 [ − T B 2 , T B 2 ] [-\frac{T_B}{2},\frac{T_B}{2}] [2TB,2TB]
C ( f ) = C m = 1 T B ∫ − T B 2 T B 2 v ( t ) e − j 2 π m f B t d t = 单个码元只在其周期内有值 1 T B ∫ − ∞ ∞ v ( t ) e − j 2 π m f B t d t = f B ∫ − ∞ ∞ [ P g 1 ( t ) + ( 1 − P ) g 2 ( t ) ] e − j 2 π m f B t d t = f B [ P G 1 ( m f B ) + ( 1 − P ) G 2 ( m f B ) ] \begin{aligned}C(f)=C_m=&\frac{1}{T_B}\int_{-\frac{T_B}{2}}^{\frac{T_B}{2}}v(t)e^{-j2 \pi mf_Bt}dt\\\overset{\underset{单个码元只在其周期内有值}{}}{=}&\frac{1}{T_B}\int_{-\infty}^{\infty}v(t)e^{-j2 \pi mf_Bt}dt\\=&f_B\int_{-\infty}^{\infty}[Pg_1(t)+(1-P)g_2(t)]e^{-j2 \pi mf_Bt}dt\\=&f_B[PG_1(mf_B)+(1-P)G_2(mf_B)]\end{aligned} C(f)=Cm==单个码元只在其周期内有值==TB12TB2TBv(t)ej2πmfBtdtTB1v(t)ej2πmfBtdtfB[Pg1(t)+(1P)g2(t)]ej2πmfBtdtfB[PG1(mfB)+(1P)G2(mfB)]
P v ( f ) = ∑ m = − ∞ ∞ ∣ f B [ P G 1 ( m f B ) + ( 1 − P ) G 2 ( m f B ) ] ∣ 2 δ ( f − m f B ) P_v(f)=\sum_{m=-\infty}^{\infty}|f_B[PG_1(mf_B)+(1-P)G_2(mf_B)]|^2\delta(f-mf_B) Pv(f)=m=fB[PG1(mfB)+(1P)G2(mfB)]2δ(fmfB)
求分量时m的选择

  • 直流分量 m=0
  • 定时分量(与码元周期相同) m=1

稳态波的功率谱是离散谱
g 1 ( t ) = − g 2 ( t ) = g ( t ) g_1(t)=-g_2(t)=g(t) g1(t)=g2(t)=g(t),即 G 1 ( w ) = − G 2 ( w ) = G ( w ) G_1(w)=-G_2(w)=G(w) G1(w)=G2(w)=G(w),且 P = 1 2 P=\frac{1}{2} P=21离散谱不存在


交变波 u ( t ) u(t) u(t)

定义为 u ( t ) = s ( t ) − v ( t ) u(t)=s(t)-v(t) u(t)=s(t)v(t)求出,但 s ( t ) s(t) s(t)没有具体表达式不好求

考虑到 u ( t ) = ∑ n = − ∞ ∞ u n ( t ) u(t)=\sum_{n=-\infty}^{\infty}u_n(t) u(t)=n=un(t)
s n ( t ) s_n(t) sn(t) v n ( t ) v_n(t) vn(t)表达式已知

u n ( t ) = s n ( t ) − v n ( t ) u_n(t)=s_n(t)-v_n(t) un(t)=sn(t)vn(t)求出
u n ( t ) = a n [ g 1 ( t − n T B ) − g 2 ( t − n T B ) ] u_n(t)=a_n[g_1(t-nT_B)-g_2(t-nT_B)] un(t)=an[g1(tnTB)g2(tnTB)]
a n = { − P P 1 = 1 − P 1 − P P 2 = P a_n=\begin{cases}-P\quad\quad P_1=1-P\\1-P\quad P_2=P\end{cases} an={PP1=1P1PP2=P

通过功率谱定义式 P u ( f ) = lim ⁡ T → ∞ E [ ∣ U T ( f ) ] ∣ 2 T = lim ⁡ N → ∞ E [ ∣ U T ( f ) ] ∣ 2 ( 2 N + 1 ) T B P_u(f)=\lim_{T \to \infty}\frac{E[|U_T(f)]|^2}{T}=\lim_{N \to \infty}\frac{E[|U_T(f)]|^2}{(2N+1)T_B} Pu(f)=TlimTE[UT(f)]2=Nlim(2N+1)TBE[UT(f)]2
求得 P u ( f ) = f B P ( 1 − P ) ∣ G 1 ( f ) − G 2 ( f ) ∣ 2 P_u(f)=f_BP(1-P)|G_1(f)-G_2(f)|^2 Pu(f)=fBP(1P)G1(f)G2(f)2
交变波的谱为连续谱,且始终存在


常见二进制波形的功率谱特性

进制等概情况

单极性

NRZ

P S ( f ) = T B 4 S a 2 ( π f T B 2 ) + 1 4 δ ( f ) P_S(f)=\frac{T_B}{4}Sa^2(\frac{\pi fT_B}{2})+\frac{1}{4}\delta(f) PS(f)=4TBSa2(2πfTB)+41δ(f)
无定时分量(当 f = f B f=f_B f=fB,取频谱零点带宽)

RZ

占空比为50%时
P S ( f ) = 1 16 ∑ m = − ∞ ∞ S a 2 ( m π 2 ) δ ( f − m f B ) + T B 2 16 S a 2 ( π f T B 2 ) P_S(f)=\frac{1}{16}\sum_{m=-\infty}^{\infty}Sa^2(\frac{m\pi}{2})\delta(f-mf_B)+\frac{T_B^2}{16}Sa^2(\frac{\pi fT_B}{2}) PS(f)=161m=Sa2(2)δ(fmfB)+16TB2Sa2(2πfTB)
有定时分量,m为偶数时无离散谱

双极性

NRZ

P S ( f ) = T B S a 2 ( π f T B ) P_S(f)=T_BSa^2(\pi fT_B) PS(f)=TBSa2(πfTB)
无定时分量

RZ

占空比为50%
P S ( f ) = T B 2 4 S a 2 ( π 2 f T B ) P_S(f)=\frac{T_B^2}{4}Sa^2(\frac{\pi}{2}fT_B) PS(f)=4TB2Sa2(2πfTB)
无定时分量


基带传输的常用码形

AMI码(Alternative Mark Inversion)

编码规则:将消息码的1交替的变成“-1”和“+1”

优点:

  • 没有直流分量,高低频分量少
  • 编译码电路简单,方便观察误码情况

缺点:当原信码中出现长连串“0”时,提取定时信号困难

H D B 3 HDB_3 HDB3

请添加图片描述

除保持了AMI码的特点之外,还将连“0”码限制在 3个以内,有利于位定时信号的提取。

曼彻斯特编码(双相码)

0码:01(低电平跳变高电平)

1码:10(高电平跳变低电平)

是一种双极性NRZ波形

由于在相同进制下传递一个原码需要使用两个码元,占用的带宽是原码的两倍

CMI码(Coded Mark Inversion)

1码:11/00交替
0码:01


请添加图片描述

请添加图片描述


数字基带传输系统的组成与模型

请添加图片描述

发送滤波器(信道信号形成器):压缩输入信号频带,使其适合于信道传输;减小码间串扰,便于同步提取

接收滤波器:去除信道噪声和干扰,对信道特性进行均衡,使输出波形利于抽样判决

抽样判决器:在由位定时脉冲控制的时刻对接受滤波器的输出进行抽样判决

同步提取:从波形中提取出用于抽样的位定时脉冲


误码和码间串扰

误码是在接收端抽样判决时因为判决器错误输出而产生的

造成误码的原因:

  • 信道加性噪声
  • 码间串扰

码间串扰(ISI):前后码元的波形叠加到当前码元抽样时刻,对当前码元的判决产生干扰
产生的原因:系统传输总特性不理想

码间串扰的定量分析

请添加图片描述

基带信号 d ( t ) = ∑ n = − ∞ ∞ a n δ ( t − n T B ) d(t)=\sum_{n=-\infty}^{\infty}a_n\delta(t-nT_B) d(t)=n=anδ(tnTB)
总传输函数 H ( w ) = G T ( w ) C ( w ) G R ( w ) H(w)=G_T(w)C(w)G_R(w) H(w)=GT(w)C(w)GR(w)
其对应的冲激响应为 h ( t ) h(t) h(t)

接收滤波器输出 y ( t ) = n R ( t ) + d ( t ) ∗ h ( t ) = n R ( t ) + ∫ − ∞ ∞ h ( τ ) d ( t − τ ) d τ = n R ( t ) + ∫ − ∞ ∞ h ( τ ) ∑ n = − ∞ ∞ a n δ ( t − n T B − τ ) d τ = n R ( t ) + ∑ n = − ∞ ∞ a n ∫ − ∞ ∞ h ( τ ) δ ( t − n T B − τ ) d τ = n R ( t ) + ∑ n = − ∞ ∞ a n h ( t − n T B ) \begin{aligned}y(t)&=n_R(t)+d(t)*h(t)\\&=n_R(t)+\int_{-\infty}^{\infty}h(\tau)d(t-\tau)d\tau\\&=n_R(t)+\int_{-\infty}^{\infty}h(\tau)\sum_{n=-\infty}^{\infty}a_n\delta(t-nT_B-\tau)d\tau\\&=n_R(t)+\sum_{n=-\infty}^{\infty}a_n\int_{-\infty}^{\infty}h(\tau)\delta(t-nT_B-\tau)d\tau\\&=n_R(t)+\sum_{n=-\infty}^{\infty}a_nh(t-nT_B)\end{aligned} y(t)=nR(t)+d(t)h(t)=nR(t)+h(τ)d(tτ)dτ=nR(t)+h(τ)n=anδ(tnTBτ)dτ=nR(t)+n=anh(τ)δ(tnTBτ)dτ=nR(t)+n=anh(tnTB)
n R ( t ) n_R(t) nR(t)为信道加性噪声经过接收滤波器的输出噪声

对于抽样时刻 t = k T B + t 0 t=kT_B+t_0 t=kTB+t0

y ( k T B + t 0 ) = n R ( k T B + t 0 ) + a n h ( t 0 ) + ∑ n ≠ k a n h [ ( k − n ) T B + t 0 ) ] y(kT_B+t_0)=n_R(kT_B+t_0)+a_nh(t_0)+\sum_{n\ne k}a_nh[(k-n)T_B+t_0)] y(kTB+t0)=nR(kTB+t0)+anh(t0)+n=kanh[(kn)TB+t0)]
最后一项即为码间串扰


无码间串扰的基带传输特性

码间串扰是在抽样时刻被表现出来的,因此想办法去除抽样时刻其他码元对当前码元抽样的影响,使得 ∑ n ≠ k a n h [ ( k − n ) T B + t 0 ] = 0 \sum_{n\ne k}a_nh[(k-n)T_B+t_0]=0 n=kanh[(kn)TB+t0]=0
无码间串扰的时域条件 h ( k T B ) = { 1 k = 0 0 k ≠ 0 h(kT_B)=\begin{cases}1 &k=0\\0 &k\ne 0\end{cases} h(kTB)={10k=0k=0
利用傅里叶逆变换使用 H ( w ) H(w) H(w)来表示 h ( t ) h(t) h(t),只关注k=0的部分进而得到

无码间串扰的频域条件 H ( w ) = ∑ i H ( w + 2 π i T B ) = T B ∣ w ∣ ≤ π T B H(w)=\sum_{i}H(w+\frac{2\pi i}{T_B})=T_B\quad |w|\le \frac{\pi}{T_B} H(w)=iH(w+TB2πi)=TBwTBπ
等效为一个理想低通滤波器

注意最后的 w w w的范围限制,虽然搬移了、叠加到了其它 w w w的范围,但只关注该范围内 H ( w ) H(w) H(w)及其搬移的叠加的值

无码间串扰的传输特性设计

理想低通特性

H ( w ) H(w) H(w)本身就是一个理想低通,在 w w w的范围限制内只有其自身(搬移都落在了频率范围之外),只有i=0项,以此情况进行推导
H ( w ) = T B [ u ( w + π T B ) − u ( w − π T B ) ] H(w)=T_B[u(w+\frac{\pi}{T_B})-u(w-\frac{\pi}{T_B})] H(w)=TB[u(w+TBπ)u(wTBπ)]
则冲激响应 h ( t ) = S a ( π T B t ) h(t)=Sa(\frac{\pi}{T_B}t) h(t)=Sa(TBπt)
请添加图片描述

其带宽 B = f N = 1 2 T B B=f_N=\frac{1}{2T_B} B=fN=2TB1(取第一零点,区分谱第一零点带宽)称作奈奎斯特带宽

当信号以 R B = 1 T B R_B=\frac{1}{T_B} RB=TB1速率传输时,与前后码元的零点重合,在抽样时刻无码间串扰,该速率称作奈奎斯特速率,数值为奈奎斯特带宽两倍(与奈奎斯特带宽和原始信号带宽关系类似,但是是不同的物理概念,抽样/传输)。

为两倍带宽是因为时域想要抽样时刻值为零的最小间隔为 T B T_B TB,再快就无法对齐零点了。

最高频带利用率 η = R B B = 2 \eta=\frac{R_B}{B}=2 η=BRB=2

余弦滚降特性

请添加图片描述

请添加图片描述

关于 f N f_N fN奇对称,同样满足在 ∣ f ∣ ≤ f N |f|\le f_N ffN ∑ i H ( w + 2 π i T B ) = T B \sum_{i}H(w+\frac{2\pi i}{T_B})=T_B iH(w+TB2πi)=TB
滚降系数 α = f Δ f N ( 0 ≤ α ≤ 1 ) \alpha=\frac{f_\Delta}{f_N}\quad(0\le\alpha\le 1) α=fNfΔ(0α1)
B = ( 1 + α ) f N B=(1+\alpha)f_N B=(1+α)fN
η = R B B = 2 f N ( 1 + α ) f N = 2 1 + α \eta=\frac{R_B}{B}={2f_N}{(1+\alpha)f_N}=\frac{2}{1+\alpha} η=BRB=2fN(1+α)fN=1+α2
α = 1 \alpha=1 α=1时,称为升余弦滚降特性,各抽样值之间增加一个零点,尾部衰减更快

比起理想低通滤波器,余弦滚降滤波器特性易实现;且响应曲线尾部收敛快,对定时要求不严格


数字基带传输系统的抗噪声性能

二进制双极性基带系统

抽样判决器输入端 x ( k T B ) = { A + n R ( k T B ) 以概率 P ( 1 ) − A + n R ( k T B ) 以概率 P ( 0 ) x(kT_B)=\begin{cases}A+n_R(kT_B)&以概率P(1)\\-A+n_R(kT_B)&以概率P(0)\end{cases} x(kTB)={A+nR(kTB)A+nR(kTB)以概率P(1)以概率P(0)
由于通过接受滤波器的高斯噪声 n R ( t ) n_R(t) nR(t)为高斯过程,故 x ( k T B ) x(kT_B) x(kTB)也可以用高斯过程的概率分布函数来表示

设定判决门限电平 V d V_d Vd

  • x ( k T B ) > V d x(kT_B)>V_d x(kTB)>Vd,判决为1码
  • x ( k T B ) < V d x(kT_B)<V_d x(kTB)<Vd,判决为0码

发1错判为0,观察发1的概率密度曲线,当对应的x小于门限电平时,被错判为0
请添加图片描述

同理发0错判为1,0的概率密度曲线对应的x大于门限
请添加图片描述

总误码率 P e = P ( 0 ) P ( 1 / 0 ) + P ( 1 ) P ( 0 / 1 ) P_e=P(0)P(1/0)+P(1)P(0/1) Pe=P(0)P(1/0)+P(1)P(0/1)
最佳门限判决电平 V d ∗ = δ n 2 2 A l n P ( 0 ) P ( 1 ) V_d^*=\frac{\delta_n^2}{2A}ln\frac{P(0)}{P(1)} Vd=2Aδn2lnP(1)P(0)
等概发送情况即有 V d ∗ = 0 V_d^*=0 Vd=0
P e = 1 2 e r f c ( A 2 δ n ) P_e=\frac{1}{2}erfc(\frac{A}{\sqrt2\delta_n}) Pe=21erfc(2 δnA)
e r f c erfc erfc误差补函数为减函数,信噪比越大,总误码率越小

对于单极性系统等概情况
V d ∗ = A 2 V_d^*=\frac{A}{2} Vd=2A
此时 P e = 1 2 e r f c ( A 2 2 δ n ) P_e=\frac{1}{2}erfc(\frac{A}{2\sqrt2\delta_n}) Pe=21erfc(22 δnA)同信噪比情况下误码率比双极性高


眼图

  • 观察码间串扰的大小
  • 观察加性噪声 n ( t ) n(t) n(t)的强弱

部分响应系统

部分响应波形:人为地、有规律地在码元的抽样时刻引入码间串扰,并在接收端判决之前加以消除

利用部分响应波形传输的系统叫做部分响应系统

作用:

  • 改善频谱特性,压缩传输频带
  • 频带利用率达到理论最大值 2 B 2B 2B
  • 加速传输波形尾部的衰减,降低对定时精度的要求

第I类部分响应波形

抽样值使用相关编码 C k = a k + a k − 1 C_k=a_k+a_{k-1} Ck=ak+ak1合成波形拖尾衰减很快(两波形拖尾极性相反)

抽样时刻上仅发生前一码元对本码元的抽样值的干扰
请添加图片描述

在接收端使用 a k = C k − a k − 1 a_k=C_k-a_{k-1} ak=Ckak1进行判决,但如果 C k C_k Ck产生了误码,会造成连续的 a k a_k ak恢复错误,产生差错传播现象

为此引入预编码,通过巧妙设计使用差分码进行预编码再对其进行相关编码,在解码时通过取模判决(相当于异或运算)可以直接得到原始码的值
请添加图片描述
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值