数字基带信号与数字基带系统
数字基带信号:占据的频谱从零频或很低频率开始
数字基带传输系统:数字基带信号不经载波调制直接传输,不含调制解调器(调制解调过程)
数字基带信号的波形
以矩形脉冲为例
不归零波形(NRZ)
- 单极性波形(“0"和"1”–零电平和正电平)
- 双极性波形(使用负电平和正电平来表示,无直流分量)
归零波形(RZ)
可以提取定时信息,占用两倍带宽
- 单极性归零波形
- 双极性归零波形
数字基带信号的通式表示
s
(
t
)
=
∑
−
∞
∞
a
n
g
(
t
−
n
T
B
)
=
∑
−
∞
∞
s
n
(
t
)
s(t)=\sum_{-\infty}^{\infty}a_ng(t-nT_B)=\sum_{-\infty}^{\infty}s_n(t)
s(t)=−∞∑∞ang(t−nTB)=−∞∑∞sn(t)
a
n
a_n
an为电平值,
n
n
n代表当前码元,
T
B
T_B
TB为当前码元持续时间,
g
g
g为码元对应的脉冲波形
数字基带信号的频谱特性
频谱分析的作用
- 确定信号的需要占用的带宽
- 获得信号谱中的直流分量、位定时分量
功率谱的确定
- 维纳辛钦公式
- 直接推导
将 s ( t ) s(t) s(t)分解成稳态波 v ( t ) v(t) v(t)和交变波 u ( t ) u(t) u(t) s ( t ) = v ( t ) + u ( t ) = ∑ n = − ∞ ∞ s n ( t ) s(t)=v(t)+u(t)=\sum_{n=-\infty}^{\infty}s_n(t) s(t)=v(t)+u(t)=∑n=−∞∞sn(t)
二进制码元 s n ( t ) = { g 1 ( t − n T B ) P 1 = P g 2 ( t − n T B ) P 2 = 1 − P s_n(t)=\begin{cases}g_1(t-nT_B)\quad P_1=P\\g_2(t-nT_B)\quad P_2=1-P\end{cases} sn(t)={g1(t−nTB)P1=Pg2(t−nTB)P2=1−P
稳态波 v ( t ) v(t) v(t)
其稳态波码元 v n ( t ) v_n(t) vn(t)为 g 1 ( t ) g_1(t) g1(t)和 g 2 ( t ) g_2(t) g2(t)的加权平均值
稳态波 v ( t ) v(t) v(t)为 s ( t ) s(t) s(t)的统计平均分量(均值)
v
(
t
)
=
∑
n
=
−
∞
∞
v
n
(
t
)
=
∑
n
=
−
∞
∞
[
P
g
1
(
t
−
n
T
B
)
+
(
1
−
P
)
g
2
(
t
−
n
T
B
)
]
v(t)=\sum_{n=-\infty}^{\infty}v_n(t)=\sum_{n=-\infty}^{\infty}[Pg_1(t-nT_B)+(1-P)g_2(t-nT_B)]
v(t)=n=−∞∑∞vn(t)=n=−∞∑∞[Pg1(t−nTB)+(1−P)g2(t−nTB)]
引理:周期信号功率谱密度与傅里叶系数的关系
P
(
f
)
=
∑
n
=
−
∞
∞
∣
C
(
f
)
∣
2
δ
(
f
−
n
f
0
)
P(f)=\sum_{n=-\infty}^{\infty}|C(f)|^2\delta(f-nf_0)
P(f)=n=−∞∑∞∣C(f)∣2δ(f−nf0)
对周期信号
v
(
t
)
v(t)
v(t)展开成傅里叶级数
v
(
t
)
=
∑
m
=
−
∞
∞
C
m
e
j
2
π
m
f
B
t
v(t)=\sum_{m=-\infty}^{\infty}C_me^{j2\pi mf_Bt}
v(t)=m=−∞∑∞Cmej2πmfBt
这里用m而不是n一是与v(t)的周期表达式中的n区分开(实际上没有用到)
在计算时为了后面直接使用
G
(
m
f
B
)
G(mf_B)
G(mfB)的傅里叶变换表示方便,选取
n
=
0
n=0
n=0的周期
[
−
T
B
2
,
T
B
2
]
[-\frac{T_B}{2},\frac{T_B}{2}]
[−2TB,2TB]
C
(
f
)
=
C
m
=
1
T
B
∫
−
T
B
2
T
B
2
v
(
t
)
e
−
j
2
π
m
f
B
t
d
t
=
单个码元只在其周期内有值
1
T
B
∫
−
∞
∞
v
(
t
)
e
−
j
2
π
m
f
B
t
d
t
=
f
B
∫
−
∞
∞
[
P
g
1
(
t
)
+
(
1
−
P
)
g
2
(
t
)
]
e
−
j
2
π
m
f
B
t
d
t
=
f
B
[
P
G
1
(
m
f
B
)
+
(
1
−
P
)
G
2
(
m
f
B
)
]
\begin{aligned}C(f)=C_m=&\frac{1}{T_B}\int_{-\frac{T_B}{2}}^{\frac{T_B}{2}}v(t)e^{-j2 \pi mf_Bt}dt\\\overset{\underset{单个码元只在其周期内有值}{}}{=}&\frac{1}{T_B}\int_{-\infty}^{\infty}v(t)e^{-j2 \pi mf_Bt}dt\\=&f_B\int_{-\infty}^{\infty}[Pg_1(t)+(1-P)g_2(t)]e^{-j2 \pi mf_Bt}dt\\=&f_B[PG_1(mf_B)+(1-P)G_2(mf_B)]\end{aligned}
C(f)=Cm==单个码元只在其周期内有值==TB1∫−2TB2TBv(t)e−j2πmfBtdtTB1∫−∞∞v(t)e−j2πmfBtdtfB∫−∞∞[Pg1(t)+(1−P)g2(t)]e−j2πmfBtdtfB[PG1(mfB)+(1−P)G2(mfB)]
P
v
(
f
)
=
∑
m
=
−
∞
∞
∣
f
B
[
P
G
1
(
m
f
B
)
+
(
1
−
P
)
G
2
(
m
f
B
)
]
∣
2
δ
(
f
−
m
f
B
)
P_v(f)=\sum_{m=-\infty}^{\infty}|f_B[PG_1(mf_B)+(1-P)G_2(mf_B)]|^2\delta(f-mf_B)
Pv(f)=m=−∞∑∞∣fB[PG1(mfB)+(1−P)G2(mfB)]∣2δ(f−mfB)
求分量时m的选择
- 直流分量 m=0
- 定时分量(与码元周期相同) m=1
稳态波的功率谱是离散谱,
当
g
1
(
t
)
=
−
g
2
(
t
)
=
g
(
t
)
g_1(t)=-g_2(t)=g(t)
g1(t)=−g2(t)=g(t),即
G
1
(
w
)
=
−
G
2
(
w
)
=
G
(
w
)
G_1(w)=-G_2(w)=G(w)
G1(w)=−G2(w)=G(w),且
P
=
1
2
P=\frac{1}{2}
P=21时离散谱不存在
交变波 u ( t ) u(t) u(t)
定义为 u ( t ) = s ( t ) − v ( t ) u(t)=s(t)-v(t) u(t)=s(t)−v(t)求出,但 s ( t ) s(t) s(t)没有具体表达式不好求
考虑到
u
(
t
)
=
∑
n
=
−
∞
∞
u
n
(
t
)
u(t)=\sum_{n=-\infty}^{\infty}u_n(t)
u(t)=n=−∞∑∞un(t)
而
s
n
(
t
)
s_n(t)
sn(t)与
v
n
(
t
)
v_n(t)
vn(t)表达式已知
由
u
n
(
t
)
=
s
n
(
t
)
−
v
n
(
t
)
u_n(t)=s_n(t)-v_n(t)
un(t)=sn(t)−vn(t)求出
u
n
(
t
)
=
a
n
[
g
1
(
t
−
n
T
B
)
−
g
2
(
t
−
n
T
B
)
]
u_n(t)=a_n[g_1(t-nT_B)-g_2(t-nT_B)]
un(t)=an[g1(t−nTB)−g2(t−nTB)]
a
n
=
{
−
P
P
1
=
1
−
P
1
−
P
P
2
=
P
a_n=\begin{cases}-P\quad\quad P_1=1-P\\1-P\quad P_2=P\end{cases}
an={−PP1=1−P1−PP2=P
通过功率谱定义式
P
u
(
f
)
=
lim
T
→
∞
E
[
∣
U
T
(
f
)
]
∣
2
T
=
lim
N
→
∞
E
[
∣
U
T
(
f
)
]
∣
2
(
2
N
+
1
)
T
B
P_u(f)=\lim_{T \to \infty}\frac{E[|U_T(f)]|^2}{T}=\lim_{N \to \infty}\frac{E[|U_T(f)]|^2}{(2N+1)T_B}
Pu(f)=T→∞limTE[∣UT(f)]∣2=N→∞lim(2N+1)TBE[∣UT(f)]∣2
求得
P
u
(
f
)
=
f
B
P
(
1
−
P
)
∣
G
1
(
f
)
−
G
2
(
f
)
∣
2
P_u(f)=f_BP(1-P)|G_1(f)-G_2(f)|^2
Pu(f)=fBP(1−P)∣G1(f)−G2(f)∣2
交变波的谱为连续谱,且始终存在
常见二进制波形的功率谱特性
进制等概情况
单极性
NRZ
P
S
(
f
)
=
T
B
4
S
a
2
(
π
f
T
B
2
)
+
1
4
δ
(
f
)
P_S(f)=\frac{T_B}{4}Sa^2(\frac{\pi fT_B}{2})+\frac{1}{4}\delta(f)
PS(f)=4TBSa2(2πfTB)+41δ(f)
无定时分量(当
f
=
f
B
f=f_B
f=fB,取频谱零点带宽)
RZ
占空比为50%时
P
S
(
f
)
=
1
16
∑
m
=
−
∞
∞
S
a
2
(
m
π
2
)
δ
(
f
−
m
f
B
)
+
T
B
2
16
S
a
2
(
π
f
T
B
2
)
P_S(f)=\frac{1}{16}\sum_{m=-\infty}^{\infty}Sa^2(\frac{m\pi}{2})\delta(f-mf_B)+\frac{T_B^2}{16}Sa^2(\frac{\pi fT_B}{2})
PS(f)=161m=−∞∑∞Sa2(2mπ)δ(f−mfB)+16TB2Sa2(2πfTB)
有定时分量,m为偶数时无离散谱
双极性
NRZ
P
S
(
f
)
=
T
B
S
a
2
(
π
f
T
B
)
P_S(f)=T_BSa^2(\pi fT_B)
PS(f)=TBSa2(πfTB)
无定时分量
RZ
占空比为50%
P
S
(
f
)
=
T
B
2
4
S
a
2
(
π
2
f
T
B
)
P_S(f)=\frac{T_B^2}{4}Sa^2(\frac{\pi}{2}fT_B)
PS(f)=4TB2Sa2(2πfTB)
无定时分量
基带传输的常用码形
AMI码(Alternative Mark Inversion)
编码规则:将消息码的1交替的变成“-1”和“+1”
优点:
- 没有直流分量,高低频分量少
- 编译码电路简单,方便观察误码情况
缺点:当原信码中出现长连串“0”时,提取定时信号困难
H D B 3 HDB_3 HDB3码
除保持了AMI码的特点之外,还将连“0”码限制在 3个以内,有利于位定时信号的提取。
曼彻斯特编码(双相码)
0码:01(低电平跳变高电平)
1码:10(高电平跳变低电平)
是一种双极性NRZ波形
由于在相同进制下传递一个原码需要使用两个码元,占用的带宽是原码的两倍
CMI码(Coded Mark Inversion)
1码:11/00交替
0码:01
数字基带传输系统的组成与模型
发送滤波器(信道信号形成器):压缩输入信号频带,使其适合于信道传输;减小码间串扰,便于同步提取
接收滤波器:去除信道噪声和干扰,对信道特性进行均衡,使输出波形利于抽样判决
抽样判决器:在由位定时脉冲控制的时刻对接受滤波器的输出进行抽样判决
同步提取:从波形中提取出用于抽样的位定时脉冲
误码和码间串扰
误码是在接收端抽样判决时因为判决器错误输出而产生的
造成误码的原因:
- 信道加性噪声
- 码间串扰
码间串扰(ISI):前后码元的波形叠加到当前码元抽样时刻,对当前码元的判决产生干扰
产生的原因:系统传输总特性不理想
码间串扰的定量分析
基带信号
d
(
t
)
=
∑
n
=
−
∞
∞
a
n
δ
(
t
−
n
T
B
)
d(t)=\sum_{n=-\infty}^{\infty}a_n\delta(t-nT_B)
d(t)=n=−∞∑∞anδ(t−nTB)
总传输函数
H
(
w
)
=
G
T
(
w
)
C
(
w
)
G
R
(
w
)
H(w)=G_T(w)C(w)G_R(w)
H(w)=GT(w)C(w)GR(w)
其对应的冲激响应为
h
(
t
)
h(t)
h(t)
接收滤波器输出
y
(
t
)
=
n
R
(
t
)
+
d
(
t
)
∗
h
(
t
)
=
n
R
(
t
)
+
∫
−
∞
∞
h
(
τ
)
d
(
t
−
τ
)
d
τ
=
n
R
(
t
)
+
∫
−
∞
∞
h
(
τ
)
∑
n
=
−
∞
∞
a
n
δ
(
t
−
n
T
B
−
τ
)
d
τ
=
n
R
(
t
)
+
∑
n
=
−
∞
∞
a
n
∫
−
∞
∞
h
(
τ
)
δ
(
t
−
n
T
B
−
τ
)
d
τ
=
n
R
(
t
)
+
∑
n
=
−
∞
∞
a
n
h
(
t
−
n
T
B
)
\begin{aligned}y(t)&=n_R(t)+d(t)*h(t)\\&=n_R(t)+\int_{-\infty}^{\infty}h(\tau)d(t-\tau)d\tau\\&=n_R(t)+\int_{-\infty}^{\infty}h(\tau)\sum_{n=-\infty}^{\infty}a_n\delta(t-nT_B-\tau)d\tau\\&=n_R(t)+\sum_{n=-\infty}^{\infty}a_n\int_{-\infty}^{\infty}h(\tau)\delta(t-nT_B-\tau)d\tau\\&=n_R(t)+\sum_{n=-\infty}^{\infty}a_nh(t-nT_B)\end{aligned}
y(t)=nR(t)+d(t)∗h(t)=nR(t)+∫−∞∞h(τ)d(t−τ)dτ=nR(t)+∫−∞∞h(τ)n=−∞∑∞anδ(t−nTB−τ)dτ=nR(t)+n=−∞∑∞an∫−∞∞h(τ)δ(t−nTB−τ)dτ=nR(t)+n=−∞∑∞anh(t−nTB)
n
R
(
t
)
n_R(t)
nR(t)为信道加性噪声经过接收滤波器的输出噪声
对于抽样时刻 t = k T B + t 0 t=kT_B+t_0 t=kTB+t0
y
(
k
T
B
+
t
0
)
=
n
R
(
k
T
B
+
t
0
)
+
a
n
h
(
t
0
)
+
∑
n
≠
k
a
n
h
[
(
k
−
n
)
T
B
+
t
0
)
]
y(kT_B+t_0)=n_R(kT_B+t_0)+a_nh(t_0)+\sum_{n\ne k}a_nh[(k-n)T_B+t_0)]
y(kTB+t0)=nR(kTB+t0)+anh(t0)+n=k∑anh[(k−n)TB+t0)]
最后一项即为码间串扰
无码间串扰的基带传输特性
码间串扰是在抽样时刻被表现出来的,因此想办法去除抽样时刻其他码元对当前码元抽样的影响,使得
∑
n
≠
k
a
n
h
[
(
k
−
n
)
T
B
+
t
0
]
=
0
\sum_{n\ne k}a_nh[(k-n)T_B+t_0]=0
n=k∑anh[(k−n)TB+t0]=0
即无码间串扰的时域条件
h
(
k
T
B
)
=
{
1
k
=
0
0
k
≠
0
h(kT_B)=\begin{cases}1 &k=0\\0 &k\ne 0\end{cases}
h(kTB)={10k=0k=0
利用傅里叶逆变换使用
H
(
w
)
H(w)
H(w)来表示
h
(
t
)
h(t)
h(t),只关注k=0的部分进而得到
无码间串扰的频域条件
H
(
w
)
=
∑
i
H
(
w
+
2
π
i
T
B
)
=
T
B
∣
w
∣
≤
π
T
B
H(w)=\sum_{i}H(w+\frac{2\pi i}{T_B})=T_B\quad |w|\le \frac{\pi}{T_B}
H(w)=i∑H(w+TB2πi)=TB∣w∣≤TBπ
等效为一个理想低通滤波器
注意最后的 w w w的范围限制,虽然搬移了、叠加到了其它 w w w的范围,但只关注该范围内 H ( w ) H(w) H(w)及其搬移的叠加的值
无码间串扰的传输特性设计
理想低通特性
当
H
(
w
)
H(w)
H(w)本身就是一个理想低通,在
w
w
w的范围限制内只有其自身(搬移都落在了频率范围之外),只有i=0项,以此情况进行推导
H
(
w
)
=
T
B
[
u
(
w
+
π
T
B
)
−
u
(
w
−
π
T
B
)
]
H(w)=T_B[u(w+\frac{\pi}{T_B})-u(w-\frac{\pi}{T_B})]
H(w)=TB[u(w+TBπ)−u(w−TBπ)]
则冲激响应
h
(
t
)
=
S
a
(
π
T
B
t
)
h(t)=Sa(\frac{\pi}{T_B}t)
h(t)=Sa(TBπt)
其带宽 B = f N = 1 2 T B B=f_N=\frac{1}{2T_B} B=fN=2TB1(取第一零点,区分谱第一零点带宽)称作奈奎斯特带宽
当信号以 R B = 1 T B R_B=\frac{1}{T_B} RB=TB1速率传输时,与前后码元的零点重合,在抽样时刻无码间串扰,该速率称作奈奎斯特速率,数值为奈奎斯特带宽两倍(与奈奎斯特带宽和原始信号带宽关系类似,但是是不同的物理概念,抽样/传输)。
为两倍带宽是因为时域想要抽样时刻值为零的最小间隔为 T B T_B TB,再快就无法对齐零点了。
最高频带利用率 η = R B B = 2 \eta=\frac{R_B}{B}=2 η=BRB=2
余弦滚降特性
关于
f
N
f_N
fN奇对称,同样满足在
∣
f
∣
≤
f
N
|f|\le f_N
∣f∣≤fN内
∑
i
H
(
w
+
2
π
i
T
B
)
=
T
B
\sum_{i}H(w+\frac{2\pi i}{T_B})=T_B
i∑H(w+TB2πi)=TB
滚降系数
α
=
f
Δ
f
N
(
0
≤
α
≤
1
)
\alpha=\frac{f_\Delta}{f_N}\quad(0\le\alpha\le 1)
α=fNfΔ(0≤α≤1)
B
=
(
1
+
α
)
f
N
B=(1+\alpha)f_N
B=(1+α)fN
η
=
R
B
B
=
2
f
N
(
1
+
α
)
f
N
=
2
1
+
α
\eta=\frac{R_B}{B}={2f_N}{(1+\alpha)f_N}=\frac{2}{1+\alpha}
η=BRB=2fN(1+α)fN=1+α2
当
α
=
1
\alpha=1
α=1时,称为升余弦滚降特性,各抽样值之间增加一个零点,尾部衰减更快
比起理想低通滤波器,余弦滚降滤波器特性易实现;且响应曲线尾部收敛快,对定时要求不严格
数字基带传输系统的抗噪声性能
二进制双极性基带系统
抽样判决器输入端
x
(
k
T
B
)
=
{
A
+
n
R
(
k
T
B
)
以概率
P
(
1
)
−
A
+
n
R
(
k
T
B
)
以概率
P
(
0
)
x(kT_B)=\begin{cases}A+n_R(kT_B)&以概率P(1)\\-A+n_R(kT_B)&以概率P(0)\end{cases}
x(kTB)={A+nR(kTB)−A+nR(kTB)以概率P(1)以概率P(0)
由于通过接受滤波器的高斯噪声
n
R
(
t
)
n_R(t)
nR(t)为高斯过程,故
x
(
k
T
B
)
x(kT_B)
x(kTB)也可以用高斯过程的概率分布函数来表示
设定判决门限电平 V d V_d Vd
- 当 x ( k T B ) > V d x(kT_B)>V_d x(kTB)>Vd,判决为1码
- 当 x ( k T B ) < V d x(kT_B)<V_d x(kTB)<Vd,判决为0码
发1错判为0,观察发1的概率密度曲线,当对应的x小于门限电平时,被错判为0
同理发0错判为1,0的概率密度曲线对应的x大于门限
总误码率
P
e
=
P
(
0
)
P
(
1
/
0
)
+
P
(
1
)
P
(
0
/
1
)
P_e=P(0)P(1/0)+P(1)P(0/1)
Pe=P(0)P(1/0)+P(1)P(0/1)
最佳门限判决电平
V
d
∗
=
δ
n
2
2
A
l
n
P
(
0
)
P
(
1
)
V_d^*=\frac{\delta_n^2}{2A}ln\frac{P(0)}{P(1)}
Vd∗=2Aδn2lnP(1)P(0)
等概发送情况即有
V
d
∗
=
0
V_d^*=0
Vd∗=0
P
e
=
1
2
e
r
f
c
(
A
2
δ
n
)
P_e=\frac{1}{2}erfc(\frac{A}{\sqrt2\delta_n})
Pe=21erfc(2δnA)
e
r
f
c
erfc
erfc误差补函数为减函数,信噪比越大,总误码率越小
对于单极性系统等概情况
V
d
∗
=
A
2
V_d^*=\frac{A}{2}
Vd∗=2A
此时
P
e
=
1
2
e
r
f
c
(
A
2
2
δ
n
)
P_e=\frac{1}{2}erfc(\frac{A}{2\sqrt2\delta_n})
Pe=21erfc(22δnA)同信噪比情况下误码率比双极性高
眼图
- 观察码间串扰的大小
- 观察加性噪声 n ( t ) n(t) n(t)的强弱
部分响应系统
部分响应波形:人为地、有规律地在码元的抽样时刻引入码间串扰,并在接收端判决之前加以消除
利用部分响应波形传输的系统叫做部分响应系统
作用:
- 改善频谱特性,压缩传输频带
- 频带利用率达到理论最大值 2 B 2B 2B
- 加速传输波形尾部的衰减,降低对定时精度的要求
第I类部分响应波形
抽样值使用相关编码 C k = a k + a k − 1 C_k=a_k+a_{k-1} Ck=ak+ak−1合成波形拖尾衰减很快(两波形拖尾极性相反)
抽样时刻上仅发生前一码元对本码元的抽样值的干扰
在接收端使用 a k = C k − a k − 1 a_k=C_k-a_{k-1} ak=Ck−ak−1进行判决,但如果 C k C_k Ck产生了误码,会造成连续的 a k a_k ak恢复错误,产生差错传播现象
为此引入预编码,通过巧妙设计使用差分码进行预编码再对其进行相关编码,在解码时通过取模判决(相当于异或运算)可以直接得到原始码的值