【通信原理】六、数字基带传输系统

一、数字基带系统与基带信号波形

对于数字基带信号,我们可以表示为:
s ( t ) = ∑ n = − ∞ ∞ a n g ( t − n T B ) s(t)=\sum_{n=-\infty}^{\infty}a_ng(t-nT_B) s(t)=n=ang(tnTB)

数字基带信号波形及其特点

  1. 单极性不归零波形:极性单一,含有直流分量,长连0/1时无法同步信息
    在这里插入图片描述

  2. 双极性不归零波形:0、1等概率时无直流分量,长连0/1时无法同步信息
    在这里插入图片描述

  3. 单极性归零波形:极性单一,含有直流分量,高电平小于一个码元持续时间,长连0/1时无法同步信息
    在这里插入图片描述

  4. 双极性归零波形:有利于同步信息
    在这里插入图片描述

  5. 差分波形:当为传号差分时,传0不变,传1反转;如果 { a n } \{a_n\} {an}为绝对码, { b n } \{b_n\} {bn}为相对码,则编码规则为:
    b n = a n ⨁ b n − 1 b_n=a_n\bigoplus b_{n-1} bn=anbn1
    译码规则为:
    a n = b n ⨁ b n − 1 a_n=b_n\bigoplus b_{n-1} an=bnbn1
    在这里插入图片描述

特点:消除初始状态的影响,解决载波相位模糊问题
6. 多电平波形:一个波形对应多个二进制代码,频带利用率高

数字基带信号的数学模型

对于第n个码元,我们可以表示为:
s n ( t ) = { g 1 ( t − n T B ) 概率 P g 2 ( t − n T B ) 概率 1 − P s_n(t)= \begin{cases} g_1(t-nT_B)\qquad概率P\\ g_2(t-nT_B)\qquad概率1-P\\ \end{cases} sn(t)={g1(tnTB)概率Pg2(tnTB)概率1P
则基带信号表示为:
s ( t ) = ∑ n = − ∞ ∞ s n ( t ) s(t)=\sum^{\infty}_{n=-\infty}s_n(t) s(t)=n=sn(t)


二、数字基带信号的功率谱密度

可将信号分解为稳态信号和交变信号,稳态信号即为统计平均
稳态信号:
v ( t ) = ∑ n = − ∞ ∞ [ P g 1 ( t − n T B ) + ( 1 − P ) g 2 ( t − n T B ) ] P v ( f ) = ∑ m = − ∞ ∞ ∣ f B [ P G 1 ( m f B ) + ( 1 − P ) G 2 ( m f B ) ] ∣ 2 δ ( f − m f B ) v(t)= \sum_{n=-\infty}^{\infty} [ Pg_1(t-nT_B)+ (1-P)g_2(t-nT_B) ] \\ \\ P_v(f)=\sum_{m=-\infty}^{\infty} \left| f_B[ PG_1(mf_B)+(1-P)G_2(mf_B) ] \right|^2 \delta(f-mf_B) v(t)=n=[Pg1(tnTB)+(1P)g2(tnTB)]Pv(f)=m=fB[PG1(mfB)+(1P)G2(mfB)]2δ(fmfB)
交变信号:
u n ( t ) = a n [ g 1 ( t − n T B ) + g 2 ( t − n T B ) ] a n = { 1 − P P − P 1 − P P u ( f ) = f B P ( 1 − P ) ∣ G 1 ( f ) − G 2 ( f ) ∣ 2 u_n(t)=a_n[ g_1(t-nT_B)+ g_2(t-nT_B) ] \\ \\ a_n=\begin{cases} 1-P\qquad &P\\ -P\qquad &1-P \end{cases} \\ \\ P_u(f)=f_BP(1-P) | G_1(f)-G_2(f) |^2 un(t)=an[g1(tnTB)+g2(tnTB)]an={1PPP1PPu(f)=fBP(1P)G1(f)G2(f)2
双边功率谱密度:
P s ( f ) = ∑ m = − ∞ ∞ ∣ f B [ P G 1 ( m f B ) + ( 1 − P ) G 2 ( m f B ) ] ∣ 2 δ ( f − m f B ) + f B P ( 1 − P ) ∣ G 1 ( f ) − G 2 ( f ) ∣ 2 P_s(f)= \sum_{m=-\infty}^{\infty} \left| f_B[ PG_1(mf_B)+(1-P)G_2(mf_B) ] \right|^2 \delta(f-mf_B) \\ +f_BP(1-P) | G_1(f)-G_2(f) |^2 Ps(f)=m=fB[PG1(mfB)+(1P)G2(mfB)]2δ(fmfB)+fBP(1P)G1(f)G2(f)2
单边功率谱密度:
P s ( f ) = 2 ∑ m = − ∞ ∞ ∣ f B [ P G 1 ( m f B ) + ( 1 − P ) G 2 ( m f B ) ] ∣ 2 δ ( f − m f B ) + 2 f B P ( 1 − P ) ∣ G 1 ( f ) − G 2 ( f ) ∣ 2 + ∣ f B [ P G 1 ( 0 ) + ( 1 − P ) G 2 ( 0 ) ] ∣ 2 δ ( f ) f ≥ 0 P_s(f)= 2\sum_{m=-\infty}^{\infty} \left| f_B[ PG_1(mf_B)+(1-P)G_2(mf_B) ] \right|^2 \delta(f-mf_B) \\ \\ +2f_BP(1-P) | G_1(f)-G_2(f) |^2 \\ \\ +\left| f_B[ PG_1(0)+(1-P)G_2(0) ] \right|^2 \delta(f) \qquad f\ge0 Ps(f)=2m=fB[PG1(mfB)+(1P)G2(mfB)]2δ(fmfB)+2fBP(1P)G1(f)G2(f)2+fB[PG1(0)+(1P)G2(0)]2δ(f)f0

  • 连续谱不能为0,且连续谱决定功率谱密度的带宽B
  • 存在哪些离散谱取决于 g 1 ( t ) g_1(t) g1(t) g 2 ( t ) g_2(t) g2(t)的波形和符号概率
  • 双极性二进制等概无离散谱

功率谱性质归纳

  • 单极性二进制信号
    P s ( f ) = f B 2 ∑ m = − ∞ ∞ ∣ P G ( m f B ) ∣ 2 δ ( f − m f B ) + f B P ( 1 − P ) ∣ G ( f ) ∣ 2 P_s(f)= f^2_B \sum_{m=-\infty}^{\infty} |PG(mf_B)|^2 \delta(f-mf_B)+ f_BP(1-P)|G(f)|^2 Ps(f)=fB2m=PG(mfB)2δ(fmfB)+fBP(1P)G(f)2

  • 双极性二进制信号
    P s ( f ) = f B 2 ∑ m = − ∞ ∞ ∣ ( 2 P − 1 ) G ( m f B ) ∣ 2 δ ( f − m f B ) + 4 f B P ( 1 − P ) ∣ G ( f ) ∣ 2 P_s(f)= f^2_B \sum_{m=-\infty}^{\infty} |(2P-1)G(mf_B)|^2 \delta(f-mf_B)+ 4f_BP(1-P)|G(f)|^2 Ps(f)=fB2m=(2P1)G(mfB)2δ(fmfB)+4fBP(1P)G(f)2

  • 单极性二进制等概信号
    P s ( f ) = 1 4 f B 2 ∑ m = − ∞ ∞ ∣ G ( m f B ) ∣ 2 δ ( f − m f B ) + 1 4 f B P ( 1 − P ) ∣ G ( f ) ∣ 2 P_s(f)= \frac{1}{4}f^2_B \sum_{m=-\infty}^{\infty} |G(mf_B)|^2 \delta(f-mf_B)+ \frac{1}{4}f_BP(1-P)|G(f)|^2 Ps(f)=41fB2m=G(mfB)2δ(fmfB)+41fBP(1P)G(f)2

  • 双极性二进制等概信号
    P s ( f ) = f B ∣ G ( f ) ∣ 2 P_s(f)= f_B|G(f)|^2 Ps(f)=fBG(f)2

  • 单极性非归零等概矩形脉冲信号
    P s ( f ) = 1 4 δ ( f ) + T B 2 S a 2 ( π f T B ) P_s(f)=\frac{1}{4} \delta(f)+ \frac{T_B}{2}Sa^2(\pi fT_B) Ps(f)=41δ(f)+2TBSa2(πfTB)
    在这里插入图片描述

  • 单极性归零(占空比为0.5)
    P s ( f ) = 1 16 ∑ m = − ∞ ∞ S a 2 ( m π 2 ) δ ( f − m f B ) + T B 16 S a 2 ( π f T B 2 ) P_s(f)=\frac{1}{16} \sum_{m=-\infty}^{\infty} Sa^2(\frac{m\pi}{2})\delta(f-mf_B)+ \frac{T_B}{16} Sa^2(\frac{\pi fT_B}{2}) Ps(f)=161m=Sa2(2)δ(fmfB)+16TBSa2(2πfTB)
    在这里插入图片描述

  • 双极性非归零等概矩形脉冲信号
    P s ( f ) = T B S a 2 ( π f T B ) P_s(f)=T_BSa^2(\pi fT_B) Ps(f)=TBSa2(πfTB)

  • 双极性归零
    P s ( f ) = T B 4 S a 2 ( π f T B 2 ) P_s(f)=\frac{T_B}{4}Sa^2(\frac{\pi fT_B}{2}) Ps(f)=4TBSa2(2πfTB)


三、基带传输的基本码型

  • AMI码
    消息码中的1交替变为正负1,而0保持不变,AMI码无直流,但连0提取信号困难

  • HDB3码
    规则和AMI码一样,但是遇到0数目大于3时,将0000代替为000V,V的极性必须交替且与前一个相邻的非0脉冲极性相同,当不能做到后一点时需要将000V改为B00V,BV极性相同。这样就解决了长连0的问题

  • 双相码
    消息1用10、消息0用01表示

  • CMI码
    1码用11、00交替表示,0码用01表示

  • 块编码

    • nBmB编码将原本的n位二进制码用m位二进制(n<m)表示,例如CMI就是一种1B2B码
    • nBmT编码将原本的n位二进制码用m位三进制(n>m)表示

四、数字基带信号传输与码间串扰

在这里插入图片描述

总传递函数为:
H ( ω ) = G T ( ω ) ⋅ C ( ω ) ⋅ G R ( ω ) H(\omega)=G_T(\omega)\cdot C(\omega)\cdot G_R(\omega) H(ω)=GT(ω)C(ω)GR(ω)
冲激响应为:
h ( t ) = 1 2 π ∫ − ∞ + ∞ H ( ω ) e j ω t   d ω h(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty} H(\omega)e^{j\omega t}\,d\omega h(t)=2π1+H(ω)etdω
其中:
d ( t ) = ∑ n = − ∞ ∞ a n δ ( t − n T B ) d(t)= \sum_{n=-\infty}^{\infty}a_n\delta(t-nT_B) d(t)=n=anδ(tnTB)
r ( k T B + t 0 ) = a k h ( t 0 ) + ∑ n ≠ k a n h [ ( k − n ) T B + t 0 ] + n R ( k T B + T 0 ) r(kT_B+t_0)=a_kh(t_0) +\sum_{n\ne k}a_nh[(k-n)T_B+t_0] +n_R(kT_B+T_0) r(kTB+t0)=akh(t0)+n=kanh[(kn)TB+t0]+nR(kTB+T0)
第一项为本码元采样值,第二项为ISI,第三项为噪声污染,消除码间干扰即将第二项为0

无码间干扰条件

在时域上
h ( m T B ) = { 1 m = 0 0 e l s e h(mT_B)= \begin{cases} 1\qquad&m=0\\ 0\qquad&else \end{cases} h(mTB)={10m=0else
即抽样时刻有值,其他码元抽样时刻为0

在频域上,根据奈奎斯特第一准则有:
∑ i H ( ω + 2 π i T B ) = T B ∣ ω ∣ ≤ π T B \sum_iH(\omega+\frac{2\pi i}{T_B})=T_B \qquad |\omega|\le\frac{\pi}{T_B} iH(ω+TB2πi)=TBωTBπ
在几何上,即分割平移后为理想低通滤波器即无ISI
由于陡降,现实使用余弦滚降

假设在频率 f N f_N fN切割后无ISI,则:
最大传输速率 R B m a x = 2 f N R_{Bmax}=2f_N RBmax=2fN
滚降系数 α = B − f N f N \alpha=\frac{B-f_N}{f_N} α=fNBfN
带宽利用率 η = R B B \eta=\frac{R_B}{B} η=BRB


五、无码间干扰基带传输系统的抗噪声性能

加性高斯白噪声经过线性滤波系统后依然为高斯白噪声,但其方差变为:
σ n 2 = ∫ − ∞ ∞ n 0 2 ∣ G R ( f ) ∣ 2 d f \sigma_n^2=\int_{-\infty}^{\infty}\frac{n_0}{2} |G_R(f)|^2df σn2=2n0GR(f)2df

双极性信号

发1与发0的概率密度函数:
f 1 ( x ) = 1 2 π σ n e x p [ − ( x − A ) 2 2 σ n 2 ] f_1(x)=\frac{1}{\sqrt{2\pi}\sigma_n}exp \left[-\frac{(x-A)^2}{2\sigma_n^2}\right] f1(x)=2π σn1exp[2σn2(xA)2]
f 0 ( x ) = 1 2 π σ n e x p [ − ( x + A ) 2 2 σ n 2 ] f_0(x)=\frac{1}{\sqrt{2\pi}\sigma_n}exp \left[-\frac{(x+A)^2}{2\sigma_n^2}\right] f0(x)=2π σn1exp[2σn2(x+A)2]
假设判决门限为 V d V_d Vd
则错发概率为:
P ( 0 ∣ 1 ) = ∫ − ∞ V d f 1 ( x ) d x = 1 2 + 1 2 e r f ( V d − A 2 σ n ) P(0|1)=\int_{-\infty}^{V_d}f_1(x)dx =\frac{1}{2}+\frac{1}{2}erf \left( \frac{V_d-A}{\sqrt{2}\sigma_n} \right) P(0∣1)=Vdf1(x)dx=21+21erf(2 σnVdA)
P ( 1 ∣ 0 ) = ∫ V d ∞ f 0 ( x ) d x = 1 2 − 1 2 e r f ( V d + A 2 σ n ) P(1|0)=\int_{{V_d}^\infty}f_0(x)dx =\frac{1}{2}-\frac{1}{2}erf \left( \frac{V_d+A}{\sqrt{2}\sigma_n} \right) P(1∣0)=Vdf0(x)dx=2121erf(2 σnVd+A)
总误码率为:
P e = P ( 1 ) P ( 0 ∣ 1 ) + P ( 0 ) P ( 1 ∣ 0 ) = 1 2 e r f c ( A 2 σ n ) P_e=P(1)P(0|1)+P(0)P(1|0) =\frac{1}{2}erfc \left( \frac{A}{\sqrt{2}\sigma_n} \right) Pe=P(1)P(0∣1)+P(0)P(1∣0)=21erfc(2 σnA)
最佳判决门限为:

V d ∗ = σ n 2 2 A ln ⁡ P ( 0 ) P ( 1 ) V_d^*=\frac{\sigma_n^2}{2A}\ln\frac{P(0)}{P(1)} Vd=2Aσn2lnP(1)P(0)

单极性信号

P e = 1 2 e r f c ( A 2 2 σ n ) P_e= \frac{1}{2}erfc \left( \frac{A}{2\sqrt{2}\sigma_n} \right) Pe=21erfc(22 σnA)
最佳判决门限为:
V d ∗ = A 2 + σ n 2 A ln ⁡ P ( 0 ) P ( 1 ) V_d^*=\frac{A}{2}+\frac{\sigma_n^2}{A}\ln\frac{P(0)}{P(1)} Vd=2A+Aσn2lnP(1)P(0)

双极性的抗噪性能更好

  • 3
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值