双边滤波器,引导滤波器

1,双边滤波器原理

优点:保持边缘,降噪平滑

首先看一下双边滤波器的公式:

公式的含义,假设下面是一个10*10的图

 选择一个5*5的窗口,分别沿水平方向和竖直向下方向建立坐标轴,水平的叫X轴,竖直向下的叫Y轴。图中一个一个小方框代表一个像素值,这些像素值都有了一个坐标。咱们举一个例子:在这个5×5的框中,像素为165的这个点坐标为(0,0),像素为156的这个点的坐标为(1,0),像素为56的这个点坐标为(0,1),像素为0的这个点的坐标为(1,1),诸如此类。

i,j是像素中心的坐标,m,n是q的坐标,I(i,j)是p的像素,I(m,n)是q的像素。 

2.引导滤波器在各种计算机视觉和计算机图形学应用中都是有效的,包括降噪、细节平滑/增强、HDR压缩、图像消光/羽化、去雾

基本原理:

 

其中,p为输入图像,I 为导向图,q 为输出图像。在这里我们认为输出图像可以看成导向图I 的一个局部线性变换,其中k是局部化的窗口的中点,因此属于窗口 ωkωk 的pixel,都可以用导向图对应的pixel通过(ak,bk)的系数进行变换计算出来。同时,我们认为输入图像 p 是由 q 加上我们不希望的噪声或纹理得到的,因此有p = q + n 。

接下来就是解出这样的系数,使得p和q的差别尽量小,而且还可以保持局部线性模型。这里利用了带有正则项的 linear ridge regression(岭回归)

求解以上方程得到a和b在局部的值,对于一个要求的pixel可能含在多个window中,因此平均后得到:

 

uk是导向图I的窗口内的均值,σk代表导向图I窗口内像素点的方差,ε是一个惩罚值。pk是图像p窗口的像素点均值。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值