人工智能性能指标

首先来认识一下混淆矩阵:

TP:表示预测为正例,实际也是正例。

FP:表示预测为正例,实际为负例。

FN:表示预测为负例,实际为正例。

TN:表示预测为负例,实际也为负例。

  1. Recall(召回率:覆盖面的度量,度量有多少个实际正例被分为正例)

Recall = TP / ( TP + FN )

2,Precision(精确率:表示预测为正例的样本中有多少是真正的正样本)

Precision=TP/(TP+FP)

3.Accuracy(ACC准确率:表示预测的结果有多少是正确的)

Accuracy=(TP+TN)/(TP+FN+FP+TN)

4,Specificity(TNR特异性:负样本预测结果数/负样本实际数)

TNP=TN/(TN+FP)

Recall和Precision的关系

可以看到召回率的分母是TP+FN,表示正样本的个数,是没有办法改变的,是客观的;那么只有TP发生变化的时候,召回率才会发生变化;因此,当置信度阈值调低之后,会导致很多阈值低的样本被认为是真,当然除了TP会增加,FP也会增加,但是FP并不会影响到召回率的大小,所以召回率会增大,但FP会影响到Precision,并且TP没有TP+FP的增长的快,所以Recall和Precision的关系是此消彼长。

5,F—score:很多时候,我们需要综合权衡这2个指标(召回率,精确率),这就引出了一个新的指标F-Score,这是综合考虑Precision和Recall的调和值。

当β=1时,成为F1-Score,这时召回率和精确率都很重要,权重相同。当有些情况下我们认为精确率更为重要,那就调整 β 的值小于 1 ,如果我们认为召回率更加重要,那就调整 β的值大于1,比如F2-Score。

6,PR曲线(P是精确率,R是召回率,以R为横轴,P为纵轴)

 

一条PR曲线代表一个模型,PR曲线上的点由不同的阈值得到,可以根据PR图选择合适的阈值,也可以通过PR曲线来判断模型的好坏,面积越大,模型越好。

但更常用的是平衡点F1。平衡点(BEP)是P=R时的取值(斜率为1),F1值越大,我们可以认为该学习器的性能较好。

F1 = 2 * P * R /( P + R )

6,ROC曲线

真正率 TPR:预测为正例且实际为正例的样本占所有正例样本(真实结果为正样本)的比例。

假正率 FPR:预测为正例但实际为负例的样本占所有负例样本(真实结果为负样本)的比例

以FPR为横轴,TPR为纵轴

 

第一个点( 0 , 1 )即FPR=0, TPR=1,这意味着FN(False Negative)=0,并且FP(False Positive)=0。意味着这是一个完美的分类器,它将所有的样本都正确分类。

第二个点( 1 , 0 ) 即FPR=1,TPR=0,意味着这是一个糟糕的分类器,因为它成功避开了所有的正确答案。

第三个点( 0 , 0 ) 即FPR=TPR=0,即FP(False Positive)=TP(True Positive)=0,可以发现该分类器预测所有的样本都为负样本(Negative)。

第四个点( 1 , 1 ) 即FPR=TPR=1,分类器实际上预测所有的样本都为正样本。

我们可以发现越接近于(0,1)我们的模型越好,对应的阈值也是我们要的阈值。

用ROC曲线比较模型:

A,B,C代表3个不同的模型,

AUC值:AUC(Area Under Curve)被定义为ROC曲线下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值