算法基础 笔记

师从 yxc (算法大佬), http://www.acwing.com,大家可以去了解一下.

目录

特殊知识:C++ STL

第一章 基础算法

1 排序

1.1 快速排序

1.2 归并排序

2 二分

2.1 整数二分

2.2浮点数二分

3 高精度

3.1 高精度加法

3.2 高精度减法

3.3 高精度乘法(高精度乘以低精度)

3.4高精度除法(高精度除以低精度)

4 前缀和 和 差分

4.1 前缀和

4.2 差分

5 双指针算法

6 位运算

7 离散化

8 区间合并

第二章 数据结构

1 链表

1.1 单链表

1.2 双链表

2 栈

2.1 模拟栈

2.2 单调栈

3 队列

3.1 模拟普通队列

3.2 模拟循环队列

3.3 单调队列

4 KMP

5 Trie树

代码如下:

6 并查集

6.1 朴素并查集

6.2 维护size的并查集

6.3 维护到祖宗节点距离的并查集

7 堆

8 哈希表(hash表)

8.1 一般哈希(数字)

8.2 字符串哈希

第三章 图论

1 DFS(深度优先搜索)

2 BFS (宽度优先遍历)

3 树和图的存储与遍历

3.1 存储

3.2 遍历

4 拓扑排序

5 最短路

5.1 朴素 Dijkstra 算法

5.2 堆优化版 Dijkstra 算法

5.3 Bellman-Ford 算法

5.4 SPFA 算法

5.5 Floyd 算法

6 最小生成树

6.1 朴素 prim 算法

6.2 堆优化版 prim 算法

6.3 Kruskal算法

7 二分图

7.1 染色法

7.2 匈牙利算法

第四章 数学

1 质数

1.1 试除法判定质数

1.2 分解质因数

1.3 筛质数(线性筛)

2 约数

2.1 试除法求约数

2.2 约数个数

2.3 约数之和

2.4 最大公约数

3 欧拉函数

3.1 求欧拉函数

3.2 筛法求欧拉函数

4 快速幂

4.1 求快速幂

4.2 快速幂求逆元

5 扩展欧几里得算法

5.1 扩展欧几里得算法

5.2 线性同余方程

6 中国剩余定理

7 高斯消元

7.1 高斯消元解方程组

7.2 高斯消元解异或线性方程组

8 求组合数

8.1 组合数 I

8.2 组合数 II 

8.3 组合数 III

8.4 组合数 IV

8.5 卡特兰数

9 容斥原理

10 博弈论

10.1 Nim游戏

10.2 台阶-Nim游戏

10.3 集合-Nim游戏

10.4 拆分-Nim游戏

第五章 动态规划

1 背包问题

2 线性DP

3 区间DP

4 计数类DP

5 数位统计DP

6 状态压缩DP

7 树形DP

8 记忆化搜索

第六章 贪心


特殊知识:C++ STL

vector, 变长数组,倍增的思想
    size()  返回元素个数
    empty()  返回是否为空
    clear()  清空
    front()/back()
    push_back()/pop_back()
    begin()/end()
    []
    支持比较运算,按字典序

pair<int, int>
    first, 第一个元素
    second, 第二个元素
    支持比较运算,以first为第一关键字,以second为第二关键字(字典序)

string,字符串
    size()/length()  返回字符串长度
    empty()
    clear()
    substr(起始下标,(子串长度))  返回子串
        //substr有2种用法:
        //假设:string s = "0123456789";
        //string sub1 = s.substr(5); 
        //只有一个数字5表示从下标为5开始一直到结尾:sub1 = "56789"
        //string sub2 = s.substr(5, 3);
        //从下标为5开始截取长度为3位:sub2 = "567"
    c_str()  返回字符串所在字符数组的起始地址

queue, 队列
    size()
    empty()
    push()  向队尾插入一个元素
    front()  返回队头元素
    back()  返回队尾元素
    pop()  弹出队头元素

priority_queue, 优先队列,默认是大根堆
    size()
    empty()
    push()  插入一个元素
    top()  返回堆顶元素
    pop()  弹出堆顶元素
    定义成小根堆的方式:priority_queue<int, vector<int>, greater<int>> q;

stack, 栈
    size()
    empty()
    push()  向栈顶插入一个元素
    top()  返回栈顶元素
    pop()  弹出栈顶元素

deque, 双端队列
    size()
    empty()
    clear()
    front()/back()
    push_back()/pop_back()
    push_front()/pop_front()
    begin()/end()
    []

set, map, multiset, multimap, 基于平衡二叉树(红黑树),动态维护有序序列
    size()
    empty()
    clear()
    begin()/end()
    ++, -- 返回前驱和后继,时间复杂度 O(logn)

    set/multiset
        insert()  插入一个数
        find()  查找一个数
        count()  返回某一个数的个数
        erase()
            (1) 输入是一个数x,删除所有x   O(k + logn)
            (2) 输入一个迭代器,删除这个迭代器
        lower_bound()/upper_bound()
            lower_bound(x)  返回大于等于x的最小的数的迭代器
            upper_bound(x)  返回大于x的最小的数的迭代器
    map/multimap
        insert()  插入的数是一个pair
        erase()  输入的参数是pair或者迭代器
        find()
        []  注意multimap不支持此操作。 时间复杂度是 O(logn)
        lower_bound()/upper_bound()

unordered_set, unordered_map, unordered_multiset, unordered_multimap, 哈希表
    和上面类似,增删改查的时间复杂度是 O(1)
    不支持 lower_bound()/upper_bound(), 迭代器的++,--

bitset, 圧位
(详细例子可见https://blog.csdn.net/weixin_44235989/article/details/107825643)
    bitset<10000> s;
    ~, &, |, ^
    >>, <<
    ==, !=
    []

    count()  返回有多少个1

    any()  判断是否至少有一个1
    none()  判断是否全为0

    set()  把所有位置成1
    set(k, v)  将第k位变成v
    reset()  把所有位变成0
    flip()  等价于~
    flip(k) 把第k位取反

第一章 基础算法

1 排序

1.1 快速排序

模板如下:

void quick_sort(int q[], int l, int r)
{
    if (l >= r) return;
    
    //确定分界点
    //x可为数组任意元素,一般性取x为(l+r)/2;
    int x = q[l + r >> 1], i = l - 1, j = r + 1;
    
    调整区间
    while (i < j)
    {
        do i ++ ; while (q[i] < x);
        do j -- ; while (q[j] > x);
        if (i < j) swap(q[i], q[j]);
    }
    
    //递归处理左右两段
    quick_sort(q, l, j);
    quick_sort(q, j + 1, r);
}

1.2 归并排序

模板如下:

void merge_sort(int q[], int l, int r)
{
    if (l >= r) return;
    
    //确定分界点
    int mid = l + r >> 1;

    //递归排序左右区间
    merge_sort(q, l, mid);
    merge_sort(q, mid + 1, r);


    //归并 - 合二为一
    int k = 0, i = l, j = mid + 1;
    while (i <= mid && j <= r)
        if (q[i] <= q[j]) tmp[k ++ ] = q[i ++ ];
        else tmp[k ++ ] = q[j ++ ];

    while (i <= mid) tmp[k ++ ] = q[i ++ ];
    while (j <= r) tmp[k ++ ] = q[j ++ ];

    for (i = l, j = 0; i <= r; i ++, j ++ ) q[i] = tmp[j];
}

2 二分

2.1 整数二分

//C++中有头文件algorithm,其中包括二分查找,lower_bound和upper_bound为二分法查找元素,其时间复杂度为O(log n)。

lower_bound:

用法:int i = lower_bound(nums, nums + n, val) - nums;//函数返回值为指针,要减去首地址。

函数解释:lower_bound函数返回数组 nums 中大于等于 val 的第一个元素的地址,若 nums 中的元素均小于 val 则返回尾后地址。

upper_bound:

用法:int i = upper_bound(nums, nums + n, val) - nums;//函数返回值为指针,要减去首地址。

函数解释:upper_bound函数返回数组 nums 中大于 val 的第一个元素的地址,若 nums 中的元素均小于等于 val 则返回尾后地址。

模板如下:

bool check(int x) {/* ... */} // 检查x是否满足某种性质

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (check(mid)) l = mid;//注:此处为l,mid应加1再除以2
        else r = mid - 1;
    }
    return l;
}

2.2浮点数二分

模板如下:

bool check(double x) {/* ... */} // 检查x是否满足某种性质

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求
    while (r - l > eps)
    {
        double mid = (l + r) / 2;
        if (check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

3 高精度

3.1 高精度加法

模板如下:

// C = A + B, A >= 0, B >= 0
vector<int> add(vector<int> &A, vector<int> &B)
{
    if (A.size() < B.size()) return add(B, A);

    vector<int> C;
    int t = 0;
    for (int i = 0; i < A.size(); i ++ )
    {
        t += A[i];
        if (i < B.size()) t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }

    if (t) C.push_back(t);
    return C;
}

3.2 高精度减法

模板如下:

// C = A - B, 满足A >= B, A >= 0, B >= 0
vector<int> sub(vector<int> &A, vector<int> &B)
{
    vector<int> C;
    for (int i = 0, t = 0; i < A.size(); i ++ )
    {
        t = A[i] - t;
        if (i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10);
        if (t < 0) t = 1;
        else t = 0;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

3.3 高精度乘法(高精度乘以低精度)

模板如下:

// C = A * b, A >= 0, b >= 0
vector<int> mul(vector<int> &A, int b)
{
    vector<int> C;

    int t = 0;
    for (int i = 0; i < A.size() || t; i ++ )
    {
        if (i < A.size()) t += A[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();

    return C;
}

3.4高精度除法(高精度除以低精度)

模板如下:

// A / b = C ... r, A >= 0, b > 0
vector<int> div(vector<int> &A, int b, int &r)
{
    vector<int> C;
    r = 0;
    for (int i = A.size() - 1; i >= 0; i -- )
    {
        r = r * 10 + A[i];
        C.push_back(r / b);
        r %= b;
    }
    reverse(C.begin(), C.end());
    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

3.5 高精度之压位

问: 高精度用 v e c t o r vectorvector 慢的一批,不管了(这题没啥意思,,)思路就是这样,有高人救一下否 ? ??

答: 高精度压位即可,i n t intint类型 只存 0~9 的一位数实在是浪费,并且速度还慢,i n t intint 类型习惯压 4 44 或 8 88 位,最多可以压 9 99 位。

注: 想学习高精度压位的,参考此博客:【算法专题】高精度之压位
 

4 前缀和 和 差分

前缀和与差分互为逆运算,其关系类似微分与积分;

4.1 前缀和

用途:简化求区间的和

一维前缀和

模板如下:

//a[n]是原数组, s[n]是前缀和数组, [l,r]为计算区间

//前缀和思想
//S[i] = a[1] + a[2] + ... a[i];

//输入原数组
for( int  i = 1; i<=n; i++)
        scanf("%d",&a[i]);

//计算前缀和数组
for( int i=1; i<=n; i++)
        S[i] = S[i-1] + a[i];

//计算区间内元素的和
sum = S[r] - S[l-1] = a[l] + ... + a[r] ;

二维前缀和

代码如下:

//输入原数组
for( int i = 1; i<=n; i++ ) 
    for( int j = 1; j<=m; j++ )
        scanf("%d",&a[i][j]);
            
//构造前缀和数组
for( int i = 1; i<=n; i++ )
    for( int j = 1; j<=m; j++ )
        s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + a[i][j];

// q 次处理            
while(q--)
{
    int x1, x2, y1, y2, sum;
    scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
        
    sum = s[x2][y2] - s[x1-1][y2] - s[x2][y1-1] + s[x1-1][y1-1];

    printf("%d\n",sum);
}

4.2 差分

用途:给区间加上相同值

一维差分

代码如下:

//差分处理
void insert( int l, int r, int c)
{
    b[l] += c;
    b[r+1] -= c;
}

//输入原数组
for( int i = 1; i <= n; i ++ ) 
    scanf("%d",&a[i]);

//构造差分数组,再[i,i]q区间上插入a[i];    
for( int i = 1; i <= n; i ++ )
    insert(i,i,a[i]);

// q 次处理,再[l,r]区间上插入c;
while( q -- )
{
    int l, r, c;
    cin >> l >> r >> c ;
    insert(l,r,c);
}

二维差分

代码如下:

//二维数组的插入
void insert(int x1, int y1, int x2, int y2, int c)
{
    S[x1][y1] += c;
    S[x1][y2+1] -= c;
    S[x2+1][y1] -= c;
    S[x2+1][y2+1] += c;
}


//输入原数组
for( int i = 1; i <= n; i++ )
    for( int j =1; j <= m; j++ )
        scanf("%d",&A[i][j]);

//构造差分数组,在[i,j]到[i,j]上插入a[i];
for( int i = 1; i <= n; i++ )
    for( int j =1; j <= m; j++ )
        insert(i,j,i,j,A[i][j]);
         
// q 次插入,在[x1,y1]到[x2,y2]上插入c;
while( q -- )
{
    int x1,y1,x2,y2,c;
    cin >> x1 >> y1 >> x2 >> y2 >> c;
    insert (x1,y1,x2,y2,c);
}
    
//前缀和公式将差分还原成 q 次操作后的数组
for( int i = 1; i <= n; i++ )
{
    for( int j =1; j <= m; j++ )
    {
        S[i][j] += S[i-1][j] + S[i][j-1] - S[i-1][j-1];
        printf("%d ",S[i][j]);
    }
    cout << endl;
}

5 双指针算法

常见问题分类:

(1) 对于一个序列,用两个指针维护一段区间

(2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作

代码如下:

for (int i = 0, j = 0; i < n; i ++ )
{
    while (j < i && check(i, j)) j ++ ;

    // 具体问题的逻辑
}

6 位运算

常见问题分类:

(1)求n的第k位数字: n >> k & 1
(2)返回n的最后一位1:lowbit(n) = n & -n

代码如下:

//求n的第k位数字: 
int find(int n,int k)
{
    return n >> k & 1;
}

//lowbit操作,返回最后一位1;
int lowbit(int &x)
{
    return x&(-x);
}

//lowbit用法举例
//统计x 的二进制表示数中有多少个1;

int main()
{
    cin >> x;

    while(x) x-=lowbit(x),res++;

    cout << res << ' ' ;
}

7 离散化

常见问题:

区间长度很长,但数据非常稀疏;

代码如下:

// 存储所有待离散化的值
vector<int> alls; 

sort(alls.begin(), alls.end());// 将所有值排序
alls.erase(unique(alls.begin(), alls.end()), alls.end()); // 去掉重复元素

// 二分求出x对应的离散化的值
int find(int x) // 找到第一个大于等于x的位置
{
    int l = 0, r = alls.size() - 1;
    while (l < r)
    {
        int mid = l + r >> 1;
        if (alls[mid] >= x) r = mid;
        else l = mid + 1;
    }
    return r + 1; // 映射到1, 2, ...n
}

8 区间合并

代码如下:


typedef pair<int,int> PII;

// 将所有存在交集的区间合并
void merge(vector<PII> &segs)
{
    vector<PII> res;

    sort(segs.begin(), segs.end());

    int st = -2e9, ed = -2e9;//定义一个最小区间边界-2e9(当区间边界为-1e9)
    for (auto seg : segs)
        if (ed < seg.first)
        {
            if (st != -2e9) res.push_back({st, ed});
            st = seg.first, ed = seg.second;
        }
        else ed = max(ed, seg.second);

    if (st != -2e9) res.push_back({st, ed});//处理最后一组数据

    segs = res;
}

第二章 数据结构

C++ stl 库里包含以下数据结构,以下内容为用数组模拟构建

1 链表

常见操作:

<1> head(链表头)后插入数

<2> 在链表中任意一元素后插入数

<3> 删除 任意元素 后的数

1.1 单链表

代码如下:

// head存储链表头,e[]存储节点的值,ne[]存储节点的next指针,idx表示当前用到了哪个节点
int head, e[N], ne[N], idx;

//单链表初始化
void init()
{
    head = -1;
    idx=0;
}

//将x插入到头节点,即,将x插入到head的后面
//头节点为 head 后的数
void add_to_head(int x )
{
    e[idx] = x;
    ne[idx] = head;
    head = idx++;
}

//将x插入到下标是 k 的点的后面
void add(int k, int x)
{
    e[idx] = x;
    ne[idx] = ne[k];
    ne[k] = idx;
    idx++;
}

//删除下标是k的点的后一位
void remove(int k)
{
    ne[k] = ne[ne[k]];
}

1.2 双链表

注:

插入操作的小技巧:在 a 前插入可化为,在 l[a] ( a 的左元素)后插入一个数;

代码如下:

// e[]表示节点的值,l[]表示节点的左指针,r[]表示节点的右指针,idx表示当前用到了哪个节点
int e[N], l[N], r[N], idx;

// 初始化
void init()
{
    //0是左端点,1是右端点
    r[0] = 1, l[1] = 0;
    idx = 2;
}

// 在节点a的右边插入一个数x
void insert(int a, int x)
{
    e[idx] = x;
    l[idx] = a, r[idx] = r[a];
    l[r[a]] = idx, r[a] = idx ++ ;
}

// 删除节点a
void remove(int a)
{
    l[r[a]] = l[a];
    r[l[a]] = r[a];
}

2 栈

常见操作:

<1> 栈顶插入一个数

<2> 栈顶弹出一个数

<3> 判断栈是非为空

<4> 查询栈顶的值

2.1 模拟栈

代码如下:

// tt表示栈顶
int stk[N], tt = 0;

// 向栈顶插入一个数
stk[ ++ tt] = x;

// 从栈顶弹出一个数
tt -- ;

// 栈顶的值
stk[tt];

// 判断栈是否为空
if (tt > 0)
{

}

2.2 单调栈

常见模型:找出每个数左边离它最近的比它大/小的数

解题步骤:先暴力,在寻找永远用不到的数,将其删去;

代码如下:


int tt = 0;
for (int i = 1; i <= n; i ++ )
{
    //向前比较,大于 x 就 pop 掉
    while (tt && check(stk[tt], i)) tt -- ;
    
    //将新数据读入栈
    stk[ ++ tt] = i;
}

3 队列

常见操作:

<1> 队尾插入一个书

<2> 队头弹出一个数

<3> 判断队列是否为空

<4> 查询队头元素

3.1 模拟普通队列

代码如下:

// hh 表示队头,tt表示队尾
int q[N], hh = 0, tt = -1;

// 向队尾插入一个数
q[ ++ tt] = x;

// 从队头弹出一个数
hh ++ ;

// 队头的值
q[hh];

// 判断队列是否为空
if (hh <= tt)
{

}

3.2 模拟循环队列

循环队列:长度一定

代码如下:

// hh 表示队头,tt表示队尾的后一个位置
int q[N], hh = 0, tt = 0;

// 向队尾插入一个数
q[tt ++ ] = x;
if (tt == N) tt = 0;

// 从队头弹出一个数
hh ++ ;
if (hh == N) hh = 0;

// 队头的值
q[hh];

// 判断队列是否为空
if (hh != tt)
{

}

3.3 单调队列

常见模型:找出滑动窗口中的最大值/最小值

//滑动窗口例题

int hh=0, tt=-1;
for(int i=0; i<n; i++ )
{
    //当队列不为空时,并且队列内元素大于k,删去队头
    if( hh<=tt && i-k+1>q[hh]) hh++;

    //当队列不为空时,若队尾元素大于要入队的元素,证明 tt 元素没用,删除
    while(hh<=tt && a[q[tt]] > a[i]) tt--;
    
    //入队一个元素
    q[++tt] = i;
        
    if(i >= k-1) printf("%d ",a[q[hh]]);
}

4 KMP

简介:在KMP算法中,为了确定在匹配不成功时,下次匹配时j的位置,引入了next[]数组,next[j]的值表示P[0...j-1]中最长后缀的长度等于相同字符序列的前缀。

作用:字符串匹配

技巧:当匹配失败时,下一次从 next[j] 开始匹配,将时间复杂度由O(m*n)下降到O(m+n)

代码如下:

// s[]是长文本,p[]是模式串,n是p的长度,m是s的长度
const int N = 100010, M=1000010;

int n, m;
int ne[N];
char p[N], s[M];

// 求模式串的Next数组:
// 对 i=2 的解释:ne[i] = 0,所以从 ne[2] 开始求 next 数组
for (int i = 2, j = 0; i <= m; i ++ )
{
    while (j && p[i] != p[j + 1]) j = ne[j];
    if (p[i] == p[j + 1]) j ++ ;
    ne[i] = j;
}

// kmp 匹配
for (int i = 1, j = 0; i <= n; i ++ )
{
    while (j && s[i] != p[j + 1]) j = ne[j];
    if (s[i] == p[j + 1]) j ++ ;
    if (j == m)
    {
        j = ne[j];
        // 匹配成功后的逻辑
    }
}

5 Trie树

简介:Trie树是一种树形结构,是一种哈希树的变种。典型应用是用于统计排序保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高。

作用:高效地储存字符串 ,并快速查找

技巧:树状结构

代码如下:


int son[N][26], cnt[N], idx;
// 0号点既是根节点,又是空节点
// son[][]存储树中每个节点的子节点
// cnt[]存储以每个节点结尾的单词数量

// 插入一个字符串
void insert(char *str)
{
    int p = 0;
    for (int i = 0; str[i]; i ++ )
    {
        int u = str[i] - 'a';
        if (!son[p][u]) son[p][u] = ++ idx;
        
        //向下延伸
        p = son[p][u];
    }
    cnt[p] ++ ; //字符串结束标志,统计相同的字符串数量
}

// 查询字符串出现的次数
int query(char *str)
{
    int p = 0;
    for (int i = 0; str[i]; i ++ )
    {
        int u = str[i] - 'a';
        if (!son[p][u]) return 0;
        p = son[p][u];
    }
    return cnt[p];
}

6 并查集

简介:并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题

作用:并,合并;查,查找

技巧:p[x] = x 时为祖宗节点

6.1 朴素并查集

代码如下:

int p[N]; //存储每个点的祖宗节点

// 返回x的祖宗节点
int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ ) p[i] = i;

// 合并a和b所在的两个集合:
p[find(a)] = find(b);

6.2 维护size的并查集

代码如下:


//p[]存储每个点的祖宗节点, size[]只有祖宗节点的有意义,表示祖宗节点所在集合中的点的数量
int p[N], size[N];

// 返回x的祖宗节点
int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ )
{
    p[i] = i;
    size[i] = 1;
}

// 合并a和b所在的两个集合:
size[find(b)] += size[find(a)];
p[find(a)] = find(b);

6.3 维护到祖宗节点距离的并查集

代码如下:

int p[N], d[N];
//p[]存储每个点的祖宗节点, d[x]存储x到p[x]的距离

// 返回x的祖宗节点
int find(int x)
{
    if (p[x] != x)
    {
        // 引入 t 变量,保存 p[x] 的祖宗节点
        int u = find(p[x]);
        d[x] += d[p[x]];
        p[x] = u;
    }
    return p[x];
}

// 初始化,假定节点编号是1~n
for (int i = 1; i <= n; i ++ )
{
    p[i] = i;
    d[i] = 0; // 可定义为全局变量,省略这一步
}

// 合并a和b所在的两个集合:
p[find(a)] = find(b);
d[find(a)] = distance; // 根据具体问题,初始化find(a)的偏移量

7 堆

堆:是一个完全二叉树,可用一维数组存储;

此为小根堆,堆顶为最小值;

代码如下:

// h[N]存储堆中的值, h[1]是堆顶,x的左儿子是2x, 右儿子是2x + 1
// ph[k]存储第k个插入的点在堆中的位置, 指针->堆(序号)
// hp[k]存储堆中下标是k的点是第几个插入的, 堆(序号)->指针

int h[N], ph[N], hp[N], size;

// 交换两个点,及其映射关系
void heap_swap(int a, int b)
{
    swap(ph[hp[a]],ph[hp[b]]); // 交换指针->堆(序号)
    swap(hp[a], hp[b]); // 交换 堆(序号)->指针
    swap(h[a], h[b]); // 交换 值
}

void down(int u)
{
    int t = u;
    if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
    if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
    if (u != t)
    {
        // 交换的是此处的值,t 与 u 不交换,t 仍然是 u*2 或 u*2+1
        heap_swap(u, t);
        down(t); // 继续down数组下标
    }
}

void up(int u)
{
    while (u / 2 && h[u] < h[u / 2])
    {
        heap_swap(u, u / 2);
        u >>= 1; // 移位运算,等效于 u /= 2;
    }
}

// O(n)建堆
// 从第二层开始建上半部分 n/2 , 下半部分 n/2, 时间复杂度O(n)
for (int i = n / 2; i; i -- ) down(i); 

8 哈希表(hash表)

8.1 一般哈希(数字)

代码如下:

(1) 拉链法
    int h[N], e[N], ne[N], idx;

    // 向哈希表中插入一个数
    void insert(int x)
    {
        int k = (x % N + N) % N;
        e[idx] = x;
        ne[idx] = h[k];
        h[k] = idx ++ ;
    }

    // 在哈希表中查询某个数是否存在
    bool find(int x)
    {
        int k = (x % N + N) % N;
        for (int i = h[k]; i != -1; i = ne[i])
            if (e[i] == x)
                return true;

        return false;
    }

(2) 开放寻址法
    int h[N];

    // 如果x在哈希表中,返回x的下标;如果x不在哈希表中,返回x应该插入的位置
    int find(int x)
    {
        int t = (x % N + N) % N;
        while (h[t] != null && h[t] != x)
        {
            t ++ ;
            if (t == N) t = 0;
        }
        return t;
    }

8.2 字符串哈希

核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低
小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果

typedef unsigned long long ULL;
ULL h[N], p[N]; // h[k]存储字符串前k个字母的哈希值, p[k]存储 P^k mod 2^64

// 初始化
p[0] = 1;
for (int i = 1; i <= n; i ++ )
{
    h[i] = h[i - 1] * P + str[i];
    p[i] = p[i - 1] * P;
}

// 计算子串 str[l ~ r] 的哈希值
ULL get(int l, int r)
{
    return h[r] - h[l - 1] * p[r - l + 1];
}

第三章 图论

1 DFS(深度优先搜索)

注意:DFS 无固定模板,两要素,循环退出条件,恢复现场;

代码例子如下:

1 2 3 的全排列

void dfs(int u)
{
    if(u==n)
    {
        for(int i=0; i<n; i++)
        {
            printf("%d ",path[i]);
        }
        puts("");
    }
    
    for(int i=1; i<=3; i++)
    {
        if(!st[i])
        {
            st[i] = true;
            path[u] = i;
            dfs(u+1);
            path[u] = 0;
            st[i] = false;
        }
    }
}

2 BFS (宽度优先遍历)

注意:有模板

模板思路:队列,第一个元素入队,队列不空,判断,符合则入队

代码如下:(迷宫最短路(权重为1))

int bfs()
{
    queue<PII> q;
    q.push({0, 0});
    
    //初始化为 -1 
    memset(d,-1,sizeof d);
    
    //建立坐标系 (dx[i],dy[i])表示向不同的方向拓展
    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
    
    //(0,0) 已经被拓展
    d[0][0] = 0;
    
    while(q.size())
    {
        //出队一个
        auto t = q.front();
        q.pop();
        
        //四个方向判断
        for(int i=0; i<4; i++ )
        {
            int x = t.first + dx[i], y = t.second + dy[i];
            if(x >= 0 && x < n && y >=0 && y < m && g[x][y]==0 && d[x][y]==-1)
            {
                d[x][y] = d[t.first][t.second] + 1;// 可以走,路线长度 +1
                q.push({x, y});// 入队一个
            }
        }
    }
    
    return d[n-1][m-1]; // 返回到终点时的长度
}

3 树和图的存储与遍历

3.1 存储

方法:1,稀疏图:邻接表(e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++ ; )

           2,稠密图:邻接矩阵(g[a][b] = c ; )

代码如下:

// 邻接表
// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;

// 添加一条边a->b
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

// 初始化
idx = 0;
memset(h, -1, sizeof h);


// 邻接矩阵
g[a][b]   // 存储边a->b

3.2 遍历

时间复杂度 :O(n+m), n 表示点数,m 表示边数

方法:1. 深度优先遍历 DFS

           2. 宽度优先遍历 BFS


// 深度优先遍历 DFS
int dfs(int u)
{
    st[u] = true; // st[u] 表示点u已经被遍历过

    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j]) dfs(j);
    }
}


// 宽度优先遍历 BFS
queue<int> q;
st[1] = true; // 表示1号点已经被遍历过
q.push(1);

while (q.size())
{
    int t = q.front();
    q.pop();

    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true; // 表示点j已经被遍历过
            q.push(j);
        }
    }
}

4 拓扑排序

邻接表存储

时间复杂度 O(n+m), n 表示点数,m 表示边数

思想:队列,先存入度为零的点,遍历该点的下一个点,这个点入度减一,判断是否为零,为零则入队,若所有元素都入队,则存在拓扑排序

代码如下:


bool topsort()
{
    int hh = 0, tt = -1;

    // d[i] 存储点i的入度
    for (int i = 1; i <= n; i ++ )
        if (!d[i])
            q[ ++ tt] = i;

    while (hh <= tt)
    {
        int t = q[hh ++ ];

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (-- d[j] == 0)
                q[ ++ tt] = j;
        }
    }

    // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
    return tt == n - 1;
}

5 最短路

5.1 朴素 Dijkstra 算法

时间复杂度  O(n^2)

思路如下:1. 初始化,

                  2. 在还未确定最短路的点中, 寻找距离最小的点,

                  3. 用这个点更新其他路径

 代码如下:

int g[N][N];  // 邻接矩阵,存储每条边
int dist[N];  // 存储1号点到每个点的最短距离
bool st[N];   // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 先选中一个点,剩余 n - 1 个点,迭代 n - 1 次
    for (int i = 0; i < n - 1; i ++ )
    {
        int t = -1;     // 在还未确定最短路的点中,寻找距离最小的点
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        st[t] = true;

        // 用t更新其他点的距离
        for (int j = 1; j <= n; j ++ )
            dist[j] = min(dist[j], dist[t] + g[t][j]);

    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

5.2 堆优化版 Dijkstra 算法

时间复杂度:O(mlogn)

思路:与朴素版相同,将第二步优化为弹出堆顶元素,更新堆时为logn

代码如下:

typedef pair<int, int> PII;

int n;      // 点的数量
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储所有点到1号点的距离
bool st[N];     // 存储每个点的最短距离是否已确定

// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 优先队列默认大根堆,此为定义小根堆
    priority_queue<PII, vector<PII>, greater<PII>> heap; 
    heap.push({0, 1});      // first存储距离,second存储节点编号

    while (heap.size())
    {
        auto t = heap.top();
        heap.pop();

        int ver = t.second, distance = t.first;

        if (st[ver]) continue; // 冗余备份,直接continue掉
        st[ver] = true;

        // 用 ver 来更新其他点的最短距离
        for (int i = h[ver]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > distance + w[i])
            {
                dist[j] = distance + w[i];
                heap.push({dist[j], j});
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

5.3 Bellman-Ford 算法

时间复杂度:O(nm)

思路:1. 题目要求最多 n 次,我们遍历 n 次;

           2. 遍历所有边,共 m 条 

代码如下:

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        // 只用当前这一步骤的最短路,防止串联
        memcpy(last, dist, sizeof dist);

        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            dist[b] = min(dist[b], last[a] + w);
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

5.4 SPFA 算法

(队列优化的Bellman-Ford算法)

时间复杂度 平均情况下 O(m),最坏情况下 O(nm)

代码如下:

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];        // 存储每个点到1号点的最短距离
bool st[N];     // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    // 遍历所有边
    while (q.size())
    {
        auto t = q.front();
        q.pop();
        
        // 及时改变为 false 可能重复入队
        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}

小知识:SPAF 算法判断负环

思路:在上述代码加上,所有点入队和记录经过的点的数组 cnt[n], 

代码如下:

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
    // 不需要初始化dist数组
    // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

    queue<int> q;
    for (int i = 1; i <= n; i ++ )
    {
        q.push(i);
        st[i] = true;
    }

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

5.5 Floyd 算法

时间复杂度:O(n^3)

思路:起末位置中间插入一点,看距离是否最短

代码如下:

// 初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

6 最小生成树

定义:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。

6.1 朴素 prim 算法

时间复杂度:O( n^2 + m )

思路:1.  dist 初始化为正无穷

           2. 循环 n 次

           3. 找到 t ,更新点,到集合的距离

代码如下:

int n;      // n表示点数
int g[N][N];        // 邻接矩阵,存储所有边
int dist[N];        // 存储其他点到当前最小生成树的距离
bool st[N];     // 存储每个点是否已经在生成树中


// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
    memset(dist, 0x3f, sizeof dist);

    int res = 0;
    for (int i = 0; i < n; i ++ )
    {
        int t = -1;
        for (int j = 1; j <= n; j ++ )
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
                t = j;

        if (i && dist[t] == INF) return INF;

        if (i) res += dist[t];
        st[t] = true;

        for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}

6.2 堆优化版 prim 算法

此算法,不常用,略

6.3 Kruskal算法

时间复杂度:O(mlogm)

思路:1. 将所有边按权重从小到大排序

           2. 枚举每条边 a, b, 权重 c 

                if a,b 不连通,将这条边加入集合

代码如下:

int n, m;       // n是点数,m是边数
int p[N];       // 并查集的父节点数组

struct Edge     // 存储边
{
    int a, b, w;

    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)     // 并查集核心操作
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

    int res = 0, cnt = 0;
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }
    }

    if (cnt < n - 1) return INF;
    return res;
}

7 二分图

定义:把一个图的顶点划分为两个不相交子集 ,使得每一条边都分别连接两个集合中的顶点。如果存在这样的划分,则此图为一个二分图。

7.1 染色法

时间复杂度:O(n + m)

思路:邻接表存储,dfs一遍,没染色,则染上色

代码如下:

int n;      // n表示点数
int h[N], e[M], ne[M], idx;     // 邻接表存储图
int color[N];       // 表示每个点的颜色,0表示未染色,1表示白色,2表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
    color[u] = c;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (color[j] == -1)
        {
            if (!dfs(j, 3 - c)) return false;
        }
        else if (color[j] == c) return false;
    }

    return true;
}

bool check()
{
    memset(color, -1, sizeof color);
    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        if (!color[i])
            if (!dfs(i, 1))
            {
                flag = false;
                break;
            }
    return flag;
}

7.2 匈牙利算法

时间复杂度:O(mn)

作用:求二分图最大匹配数目

思路:枚举一边,如果重复,看上一个能不能换

代码如下:

int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
    memset(st, false, sizeof st);
    if (find(i)) res ++ ;
}

第四章 数学

1 质数

1.1 试除法判定质数

模板如下:

bool is_prime(int x)
{
    if (x < 2) return false;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
            return false;
    return true;
}

1.2 分解质因数

模板如下:

void divide(int x)
{
    for(int i = 2; i <= x/i; i ++ )
    {
        if(x % i == 0)
        {
            int s=0;
            while(x % i == 0) x /= i, s ++ ;
            printf("%d %d\n", i, s);
        }
    }
    
    if( x > 1 ) printf("%d %d\n", x, 1);
    puts("");
}

1.3 筛质数(线性筛)

线性筛例题:F. Function

例题讲解:F. Function 线性筛模板讲解

// 用每个合数的最小质因子筛去该数
void get_primes(int n)
{
	for(int i = 2; i <= n; i ++ )
	{
		if(!st[i]) primes[cnt++] = i;
		// 等同于 for(int j = 0; i * primes[j] <= n; j ++ )
		// i * primes[j] 为 要筛的合数
		for(int j = 0; primes[j] <= n/i; j ++ )
		{
		    // 本次循环的作用筛去 合数primes[j] * i 
		    // 两种情况,分别保证 i*primes[j] 被其最小质因子筛去
			// 1、当 i % primes[j] != 0 时,primes[j] 一定小于i的任何质因子,所以,primes[j] 一定为 i*primes[j]的最小质因子时
		    // 2、当 i % primes[j] == 0 时,primes[j] 为i的最小质因子,同时也为i*primes[j]的最小质因子
			st[primes[j] * i] = true; 
			
			// 当prmies[j] 为 i 的最小质因子时,结束,再继续就不能保证是被最小质因子筛去
			if(i % primes[j] == 0) break; 
		 } 
	}
}

2 约数

2.1 试除法求约数

vector<int> get_divisors(int x)
{
    vector<int> res; // 所有约数存于res数组中
    for(int i = 1; i <= x/i; i ++ )
    {
        if( x % i == 0 ) 
        {
            res.push_back(i);
            // 判断是否重复放入res中,也可以不分青红皂白都放入,然后再unique一下
            if( i != x/i ) res.push_back(x/i);
        }
    }
    sort(res.begin(), res.end());
    
    return res;
}

2.2 约数个数

假设 数 n 可分解为:p1^a1 * p2 ^ a2 * …… * pk ^ ak(pk 为 n 的所有质数)

则 n 的约数个数为 (a1 + 1) * (a2 + 1) * …… * (ak + 1)

证明:设 n 的约数 x = p1 ^b1 * p2^b2 * …… * pk ^ bk,其中  0 <= bk  <= ak,即对于每个ak,有 1+ak 种选择,所以所有个数为所有的 ak + 1 的乘积;

int main()
{
    scanf("%d",&n);

    unordered_map<int,int> primes;

    while(n -- )
    {
        int x;
        scanf("%d",&x);

        for(int i = 2; i <= x/i; i ++ )
        {
            while( x % i == 0)
            {
                x /= i;
                primes[i] ++;
            }
        }
        if(x > 1) primes[x] ++;
    }
    LL res = 1;
    for(auto p : primes) res = res*(p.second+1)%mod;

    cout << res << endl;

    return 0;
}

2.3 约数之和

假设 数 n 可分解为:p1^a1 * p2 ^ a2 * …… * pk ^ ak(pk 为 n 的所有质数)

则 n 的约数之和为 (p1^0 + p1^1 + p1^2 + …… + p1^a1) * (p2^0 + p2^1 + p2^2 + …… + p2^a2) * …… * (pk^0 + pk^1 + pk^2 + …… + pk^ak)

证明:将上式用乘法分配律展开,即为所有的约数

int main()
{
    int n;
    cin >> n;
    
    unordered_map<int,int> primes;
    
    while(n -- )
    {
        int x;
        scanf("%d",&x);
        for(int i = 2; i <= x / i; i ++ )
        {
            while(x % i == 0)
            {
                x /= i;
                primes[i] ++;
            }
            if(x > 1) primes[x] ++;
        }
    }
    
    LL res;
    for(auto prime:primes)
    {
        int a = prime.first, b = prime.second;
        LL t = 1;
        while(b -- ) t = (t * a + 1)%mod;
        res = res * t % mod;
    }
    
    cout << res << endl;
    
    return 0;
}

2.4 最大公约数

欧几里得算法(辗转相除法)(与 C++ 的 __gcd(a,b) 一样)

int gcd(int a, int b)
{
    return b?gcd(b, a%b):a;
}

3 欧拉函数

3.1 求欧拉函数

欧拉函数:

int x;

int res = x;
for(int i = 2; i <= x/i; i ++ )
{
    if(x % i == 0)
    {
        res = res / i * (i - 1);
        while(x % i == 0) x /= i;
    }
}
    
if(x > 1) res = res / x * (x - 1);

printf("%d\n", res);

3.2 筛法求欧拉函数

方法:在线性筛种,根据 primes[j] 的两种情况,更新对应的 i * primes[j] 的欧拉函数

当 i % primes[j] == 0 时,i * primes[j] 的质因数与 primes[j] 的质因数一致,只更新 N 即可,即,将 ph[i * primes[j] ] = phi[i] * primes[j] 

当i % primes[j] != 0 时,i *  primes[j] 的质因数 比 primes[j] 多一个 primes[j] 本身,phi[i * primes[j] ] = phi[i] * (primes[j] - 1)/ primes[j] * primes[j]  -->  phi[i * primes] = phi[i] * (primes[j] - 1)

LL get_eulers(int n)
{
    phi[1] = 1;
    
    for(int i = 2; i <= n; i ++ )
    {
        if(!st[i]) 
        {
            primes[cnt++] = i;
            phi[i] = i - 1;
        }
        for(int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if(i % primes[j] == 0)
            {
                phi[primes[j] * i] = phi[i] * primes[j];
                break;
            }
            phi[primes[j] * i] = phi[i] * (primes[j] - 1);
        }
    }
    
    for(int i = 1; i <= n; i ++ ) res += phi[i];
    
    return res;
}

4 快速幂

4.1 求快速幂

LL qmi(int a, int k, int p)
{
    LL res = 1;
    while( k )
    {
        if(k & 1) res = (LL)res * a % p;
        k >>= 1;
        a = (LL)a * a % p;
    }

    return res;
}

4.2 快速幂求逆元

一般即求 qmi(a, p-2, p) 

逆元用到的场景:除法后模p,可转化为乘以乘法逆元后取余再模p(粗体部分再模p状态下等效)

#include <iostream>

using namespace std;

typedef long long LL;

int n;

int qmi(int a, int k, int p)
{
    int res = 1;
    while(k)
    {
        // k & 1 返回二进制的最后一位的数字,
        if( k & 1 ) res = (LL)res*a % p;
        // 向右移 1 位,除去二进制的最后一位数字
        k >>= 1;
        // 算一位,a 乘 一倍
        a = (LL)a*a % p;
    }
    
    return res;
}

int main()
{
    scanf("%d",&n);
    
    while(n -- )
    {
        int a, p;
        scanf("%d%d",&a,&p);
        
        int res = qmi(a, p-2, p);
        if(a % p) printf("%d\n",res);
        else puts("impossible");
    }
    
    return 0;
}

5 扩展欧几里得算法

5.1 扩展欧几里得算法

用途:证明裴蜀定理,并求出任意一组解

int exgcd(int a, int b, int &x, int &y)
{
    // 到达递归边界,开始回溯
    if(!b)
    {
        // 将(a, b)的系数,更新为(a, 0)的系数,推导出x = 1, y = 0,一定成立
        x = 1, y = 0;
        return a;
    }
    
    int d = exgcd(b, a%b, y, x);
    
    // 将(a,b)的系数,更新为(b,a%b)的系数
    y -= a/b*x;
    
    return d; // 得到最大公因数
}

5.2 线性同余方程

 可化简为 a*x + m*y = b

其中,当 b 为 gcd(a, m) 的倍数时(即、gcd(a, m) | b),方程有解;反之,无解;

#include <iostream>

using namespace std;

typedef long long LL;


int exgcd(int a, int b, int &x, int &y)
{
    // 到达递归边界,开始回溯
    if(!b)
    {
        x = 1, y = 0;
        return a;
    }
    
    int d = exgcd(b, a%b, y, x);
    
    // 将(a,b)的系数,更新为(b,a%b)的系数
    y -= a/b*x;
    
    return d; // 得到最大公因数
}


int main()
{
    int n;
    scanf("%d",&n);
    
    while(n -- )
    {
        int a, b, m, x, y;
        scanf("%d%d%d",&a,&b,&m);
        
        int d = exgcd(a,m,x,y);
        
        if(b % d) puts("impossible");
        else printf("%d\n",(LL) x * (b / d) % m );
        
    }
    return 0;
}

6 中国剩余定理

7 高斯消元

7.1 高斯消元解方程组

运用矩阵性质,变换,答案为 a[i][n]

步骤:变为行阶梯型

1、由第一列 c 开始向后枚举,找到本列的最大数的行

2、将最大行交换到为处理过的数据的第一行 r 

3、将未处理数据第一行 r 除以第一个数,即、将首数据变为1

4、用本列的第一行行将下面未处理数据的本列其他数据消为0

判断,无解,无穷解,有解

若有解,倒着枚举每行的数据,a[i][n] 即为所求结果

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

const int N = 110;
const double eps = 1e-8;

int n;
double a[N][N];

int gauss()  // 高斯消元,答案存于a[i][n]中,( i >= 0 && i < n )
{
    int c, r;
    for (c = 0, r = 0; c < n; c ++ )
    {
        int t = r;
        // 找到当前列种绝对值最大的行
        for(int i = r; i < n; i ++ )
            if(fabs(a[i][c]) > fabs(a[t][c])) 
                t = i;
        
        
        if (fabs(a[t][c]) < eps) continue;

        // 将绝对值最大的行换到最顶端
        for(int i = c; i <= n; i ++ ) swap(a[r][i], a[t][i]);
        
        // 将当前行的首位变成1
        for(int i = n; i >= c; i -- )
            a[r][i] /= a[r][c];
        
        
        // 再该列上,用当前行的数将下面所有的行的数消成0
        for(int i = r + 1; i < n; i ++ )
            if(fabs(a[i][c]) > eps)
                for(int j = n; j >= c; j -- )
                    a[i][j] -= a[r][j] * a[i][c];
        
        r ++ ;
    }

    if (r < n)
    {
        // 无解,0x = 实数
        for(int i = r; i < n; i ++ )
            if(fabs(a[i][n]) > eps)
                return 2;        
        
        return 1; // 有无穷多组解
    }

    // 反推答案
    for(int i = n - 1; i >= 0; i -- )
        for(int j = i + 1; j < n; j ++ )
            a[i][n] -= a[i][j] * a[j][n];

    return 0; // 有唯一解
}


int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < n + 1; j ++ )
            scanf("%lf", &a[i][j]);

    int t = gauss();
    if (t == 2) puts("No solution");
    else if (t == 1) puts("Infinite group solutions");
    else
    {
        for (int i = 0; i < n; i ++ )
        {
            if (fabs(a[i][n]) < eps) a[i][n] = 0;  // 去掉输出 -0.00 的情况
            printf("%.2lf\n", a[i][n]);
        }
    }

    return 0;
}

7.2 高斯消元解异或线性方程组

异或:不进位加法,和普通高斯消元类似,将 +,- 换成 ^

#include <bits/stdc++.h>

using namespace std;

const int N = 110;

int n;
int a[N][N];

int gauss()
{
    int r, c;
    for(r = c = 0; c < n; c ++ )
    {
        int t = r;
        for(int i = r; i < n; i ++ )
            if(a[i][c])
            {
                t = i;
                break;
            }
        
        if(!a[t][c]) continue;
        
        for(int i = c; i <= n; i ++ ) 
            swap(a[t][i], a[r][i]);
        
        for(int i = r + 1; i < n; i ++ )
            if(a[i][c])
                for(int j = c; j <= n; j ++ )
                    a[i][j] ^= a[r][j];
        
        r ++;
    }
    
    if(r < n) 
    {
        for(int i = r; i < n; i ++ )
            if(a[i][n]) 
                return 2;
        return 1;
    }
    
    for(int i = n - 1; i >= 0; i -- )
        for(int j = i + 1; j < n; j ++ )
            a[i][n] ^= a[i][j] & a[j][n];
            
    return 0;
}

int main()
{
    scanf("%d", &n);
    for(int i = 0; i < n; i ++ )
        for(int j = 0; j < n + 1; j ++ )
            scanf("%d", &a[i][j]);
            
    int t = gauss();
    if(t == 2) puts("No solution");
    else if(t == 1) puts("Multiple sets of solutions");
    else
    {
        for(int i = 0; i < n; i ++ )
            printf("%d\n", a[i][n]);
    }
    
    return 0;
}

8 求组合数

8.1 组合数 I

方法:预处理 + 递推

时间复杂度:O( n^2 )

#include <iostream>
#include <algorithm>

using namespace std;

const int N =  2010, mod = 1e9+7;

int c[N][N];

void init()
{
    for(int i = 0; i < N; i ++ )
    {
        for(int j = 0; j <= i; j ++ )
        {
            if(!j) c[i][j] = 1;
            else c[i][j] = (c[i-1][j-1] + c[i-1][j]) % mod;
        }
    }
}

int main()
{
    init();
    
    int n;
    scanf("%d",&n);
    
    while( n -- )
    {
        int a, b;
        scanf("%d%d",&a, &b);
        printf("%d\n",c[a][b]);
    }
    
    return 0;
}

8.2 组合数 II 

方法:预处理阶乘 + 求逆元

时间复杂度:O( nlogn )

#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 100010, mod = 1e9+7;

int fact[N], infact[N];

int qmi(int a, int k, int p)
{
    int res = 1;
    while(k)
    {
        if(k & 1) res = (LL)res * a % p;
        k >>= 1;
        a = (LL) a * a % p;
    }
    
    return res;
}

int main()
{
    fact[0] = infact[0] = 1;
    for(int i = 1; i < N; i ++ )
    {
        fact[i] = (LL)fact[i-1] * i % mod;
        infact[i] = (LL)infact[i-1] * (qmi(i, mod-2, mod) % mod) % mod;
    }
    
    int n;
    scanf("%d",&n);
    
    while(n -- )
    {
        int a, b;
        scanf("%d%d",&a,&b);
        int res = (LL)fact[a] * (infact[a-b] % mod) * (infact[b] % mod) % mod;
        printf("%d\n",res);
    }
    
    return 0;
}

8.3 组合数 III

理论基础Lucas定理(卢卡斯定理)

方法:Lucas定理 + 基础组合数求法 + 逆元

时间复杂度化简为

#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

int p; 

int qmi(int a, int k)
{
    int res = 1;
    while(k)
    {
        if(k & 1) res = (LL)res * a % p;
        a = (LL)a * a % p;
        k >>= 1;
    }
    
    return res;
}

int C(int a, int b)
{
    int res = 1;
    for(int i = 1, j = a; i <= b; i ++, j -- )
    {
        res = (LL)res * j % p;
        res = (LL)res * qmi(i, p - 2) % p;
    }
    return res;
}

int lucas(LL a, LL b)
{
    if(a < p && b < p ) return C(a, b);
    else return (LL)C(a % p, b % p) * lucas(a / p, b / p ) % p ;
}

int main()
{
    int n;
    cin >> n;
    
    while(n -- )
    {
        LL a, b;
        cin >> a >> b >> p ;
        
        int res = lucas(a, b);
        
        cout << res << endl;
    }
    
    return 0;
}

8.4 组合数 IV

 方法:分解质因数 + 阶乘求质因数 + 高精度乘法

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;

const int N = 5010;

int primes[N], cnt;
int sum[N];
bool st[N];

void get_primes(int n)
{
    for(int i = 2; i <= n; i ++ )
    {
        if(!st[i]) primes[cnt++] = i;
        for(int j = 0; primes[j] <= n / i; j ++ )
        {
            st[primes[j] * i] = true;
            if( i % primes[j] == 0) break; // 注意 == 0
        }
    }
}

int get(int n, int p)
{
    int res = 0;
    while(n)
    {
        res += n / p;
        n /= p;
    }
    return res;
}

vector<int> mul(vector<int> a, int b)
{
    vector<int> res;
    
    int t = 0;
    
    for(int i = 0; i < a.size() || t ; i ++ )
    {
        if(i < a.size()) t += a[i] * b;
        res.push_back(t % 10);
        t /= 10;
    }
    
    while(a.size() > 0 && a.back() == 0) a.pop_back();
    
    return res;
}

int main()
{
    int a, b;
    cin >> a >> b ;
    
    get_primes(a);
    
    for(int i = 0; i < cnt; i ++ )
    {
        int p = primes[i];
        sum[i] = get(a, p) - get(b, p) - get(a - b, p);
    }
    
    vector<int> res;
    res.push_back(1);
    
    for(int i = 0; i < cnt; i ++ )
    {
        for(int j = 0; j < sum[i]; j ++ )
        {
            res = mul(res,primes[i]);
        }
    }
    
    for(int i = res.size() - 1; i >= 0; i -- )
    {
        printf("%d",res[i]);
    }
    puts("");
    
    return 0;
    
}

8.5 卡特兰数

点击跳转:卡特兰数 

具体公式如下所示:

 

推导过程如下:

例题:889. 满足条件的01序列 

AC代码:

#include <bits/stdc++.h> // 卡特兰数

using namespace std;

typedef long long LL;

const int mod = 1e9+7;

int qmi(int a, int k, int p)
{
    int res = 1;
    while(k)
    {
        if(k & 1) res = (LL)res * a % mod;
        a = (LL) a * a % mod;
        k >>= 1;
    }
    
    return res;
}

int main()
{
    int n;
    cin >> n ;
    
    int a = 2 * n, b = n, res = 1;
    
    for(int i = a; i > a - b; i -- ) res = (LL)res * i % mod;
    for(int i = 1; i <= b; i ++ ) res = (LL)res * qmi(i, mod - 2, mod) % mod;
    
    res = (LL)res * qmi(n+1, mod-2, mod) % mod;
    
    cout << res << endl;
    
    return 0;
}

9 容斥原理

点此处跳转:容斥原理

方法:容斥原理 + 位运算枚举所有状态

例题能被整除的数

AC代码:

#include <iostream>
#include <algorithm>

using namespace std;

typedef long long LL;

const int N = 20;

int n, m;
int p[N];

int main()
{
    cin >> n >> m ;
    
    int res = 0;
    for(int i = 0; i < m; i ++ ) cin >> p[i];
    
    for(int i = 1; i < 1 << m; i ++ )
    {
        int t = 1, cnt = 0;
        for(int j = 0; j < m; j ++ )
        {
            if(i >> j & 1)
            {
                cnt ++ ;
                if((LL)t * p[j] > n)
                {
                    t = -1;
                    break;
                }
                t *= p[j];
            }
        }
        
        if( t != -1 )
        {
            if(cnt % 2) res += n / t;
            else res -= n / t;
        }
    }
    
    cout << res << endl;
    
    return 0;
}

10 博弈论

10.1 Nim游戏

例题链接:Nim游戏​​​​​​

必胜态与必败态:

        先手必胜态:可以走到任意一个必败态

        先手必败态:无法走到任意一个必败态

明确三点:

        1. 0 ^ 0 ^ 0 ^ …… ^ 0  = 0 (必败态)

        2. a[1] ^ a[2] ^ a[3] ^ …… ^ a[n] = x != 0(必胜态)

        3. a[1] ^ a[2] ^ a[3] ^ …… ^ a[n] = 0(必败态)

证明以上三点:

        1. 不用证明

        2.知:a[i] ^ x <= a[i], 我们可以大于 x 的 a[i] 中取走 a[i] - (a[i] ^ x) 个物品,使 a[i] -> a[i] ^ x,如此,即、a[1] ^ a[2] ^ a[3] ^ …… ^ a[n]^x = x^x = 0,另一个人再取任意物品都会使 异或值 不等于 0 ,我们再使结果为0,如此,后者所在的状态都是异或值为0的状态,所以 条件1 的必败态一定归后手

        3. 取任意物品,都会破坏异或0的状态,从而使对方取后自己取时仍未异或0的状态,即必败态归先手

所以只需判断,所有的物品异或一起的值是否未0,=0 (必败态),!= 0 (必胜态)

代码如下

#include <iostream>
#include <algorithm>

using namespace std;

int main()
{
    int n;
    cin >> n;
    
    int res = 0;
    while(n -- )
    {
        int x;
        scanf("%d",&x);
        res ^= x;
    }
    
    if(res) puts("Yes");
    else puts("No");
    
    return 0;
}

10.2 台阶-Nim游戏

例题链接:台阶-Nim游戏

明确三点

        1. 0 ^ 0 ^ 0 ^ …… ^ 0  = 0 (必败态)

        2. a[1] ^ a[3] ^ a[5] ^ …… ^ a[2*n-1] = x != 0(必胜态)

        3. a[1] ^ a[3] ^ a[5] ^ …… ^ a[2*n-1] = 0(必败态)

证明

若移动偶数项,则另一个人移动偶数项的下面一项(即前一项),是奇数项数不变,如此可知,答案于偶数项无关。

若移动奇数项,则可将必胜态于必败态互换,另一人再是必胜态必败态互换,则相当于状态没变,所以胜负再输入数据的那一刻就已经分出分晓

代码如下

#include <bits/stdc++.h>

using namespace std;

int main()
{
    int n, x, res = 0;
    scanf("%d", &n);
    for(int i = 1; i <= n; i ++ )
    {
        scanf("%d", &x);
        if(i % 2) res ^= x;
    }
    
    if(res) puts("Yes");
    else puts("No");
    
    return 0;
}

10.3 集合-Nim游戏

例题链接集合-Nim游戏

mex函数与SG函数:

思路:将所有堆石子的SG函数异或起来,若为 0 则先手必败,反之先手必胜

SG(x) = x != 0,可以走到任意的小于 x 的 SG(x - t) 函数,同时保证对手只能走到 0 ,必败态。

SG(x) == 0,终点,为必败态。

令所有的石子堆异或为 0 ,即为 先手必败态

求SG函数:记忆化搜索

代码如下

#include <bits/stdc++.h>

using namespace std;

const int N = 110, M = 10010;

int n, m;
int s[N], f[M];

int sg(int x)
{
    if(f[x] != -1) return f[x];
    
    unordered_set<int> S;
    
    for(int i = 0; i < m; i ++ )
    {
        int sum = s[i];
        if(x >= sum) S.insert(sg(x - sum));
    }
    
    for(int i = 0; ; i ++ )
        if(!S.count(i))
            return f[x] = i;    
}

int main()
{
    scanf("%d", &m);
    for(int i = 0; i < m; i ++ ) scanf("%d", &s[i]);
    
    memset(f, -1, sizeof f);
    
    scanf("%d", &n);
    
    int res = 0, x;
    for(int i = 0; i < n; i ++ )
    {
        scanf("%d", &x);
        res ^= sg(x);
    }
    
    if(res) puts("Yes");
    else puts("No");
    
    return 0;
}

10.4 拆分-Nim游戏

例题链接拆分-Nim游戏

与集合Nim相似,后继状态为最大值小于当前状态 x 的所有二元组(i,j)

即sg(x) = mex{sg(i) ^ sg(j)……};

代码如下

#include <bits/stdc++.h>

using namespace std;

const int N = 110;

int n;
int f[N];

int sg(int x)
{
    if(f[x] != -1) return f[x];
    
    unordered_set<int> S;
    for(int i = 0; i < x; i ++ )
        for(int j = 0; j <= i; j ++ )
            S.insert(sg(i) ^ sg(j));
            
    for(int i = 0; ; i ++ )
        if(!S.count(i))
            return f[x] = i;
}

int main()
{
    scanf("%d", &n);
    
    memset(f, -1, sizeof f);
    
    int res = 0, x;
    for(int i = 0; i < n; i ++ )
    {
        scanf("%d", &x);
        res ^= sg(x);
    }
    
    if(res) puts("Yes");
    else puts("No");
    
    return 0;
}

第五章 动态规划

1 背包问题

背包九讲(闫氏DP分析法)(详细思路及证明)

2 线性DP

线性DP模板题

3 区间DP

区间DP模板题(石子合并)

4 计数类DP

计数类DP模板题(900. 整数划分)

5 数位统计DP

数位统计DP(338. 计数问题)

6 状态压缩DP

状态压缩DP(蒙德里安的梦想,最短Hamilton路径)

7 树形DP

树形DP(没有上司的舞会)

8 记忆化搜索

记忆化搜索(滑雪)

第六章 贪心

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AC自动寄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值