Educational Codeforces Round 128 (Rated for Div. 2)

本文介绍了三道算法题目的详细解析,包括数组中最小值和最大值个数的计算,二维字符串中RRR字符的移动问题,以及字符串中星号(*)的移动与吞噬问题。通过朴素和优化的解法展示了如何处理这些问题,涉及到了区间交集、字符位置判断以及动态规划等算法思想。
摘要由CSDN通过智能技术生成

题目传送门 A

Problem A

题目大意:

一个数组中存在 [ l 1 , r 1 ] [ l1, r1 ] [l1,r1] 个最小值和 [ l 2 , r 2 ] [ l2, r2 ] [l2,r2]个最大值,求这个数组中元素的最小个数。

思路:

朴 素 做 法 : 朴素做法:
分为三种情况,
( 1 ) (1) (1) 第二个区间在第一个区间右边,
( 2 ) (2) (2) 第二个区间和第一个区间重叠一部分,
( 3 ) (3) (3) 第二个区间在第一个区间左边,
分析交集,输出即可

简 单 做 法 : 简单做法:
( 1 ) (1) (1) 若两个区间独立,则将 l 1 + l 2 l1 + l2 l1+l2作为 r e s res res输出
( 2 ) (2) (2) 若两个区间不独立,则一定存在 l 2 l2 l2 或者 l 1 l1 l1 在另一个区间中,可分析知道, m a x ( l 1 , l 2 ) max(l1, l2) max(l1,l2) 一定为两者重叠部分的最小值,则将 m a x ( l 1 + l 2 ) max(l1 + l2) max(l1+l2)作为 r e s res res输出

代码如下:

#include <bits/stdc++.h>

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5+10;

/*简单做法
void solve() {
    if(r2 < l1 || r1 < l2) cout << l1 + l2 << endl;
    else cout << max(l1, l2) << endl;
}
*/

void solve()
{
    int l1, r1, l2, r2;
    scanf("%d %d %d %d", &l1, &r1, &l2, &r2);
    int res = 0;

    if(l2 > r1) res = l1 + l2;
    else if(l2 <= r1 && l2 >= l1) res = l2;
    else if(l2 < l1 && r2 >= l1) res = l1;
    else res = l1 + l2;

    printf("%d\n", res);
}

int main()
{
    int T;
    scanf("%d", &T);

    while(T -- )
        solve();

    return 0;
}

题目传送门 B

Problem B

题目大意:

给定二维字符串,包含 E E E R R R,两种字符;可以将 R R R 字符上下左右移动,但移动时必须所有的 R R R 字符一起动。
问:能否将任意一个 R R R 移动到左上角 ( 0 , 0 ) (0, 0) (0,0) 的位置,同时其他的 R R R 不在移动的过程中超出边界,能输出 Y E S YES YES ,反之输出 N O NO NO

思路:
同时查找最左边,和最上边的 R R R 字符的坐标,比较坐标是否相等

代码如下:

#include <bits/stdc++.h>

// 将 PII 的第一个数重命名 为 x
// 第二个数重命名为 y ,便于理解代码
#define x first
#define y second

using namespace std;

typedef pair<int, int> PII;
typedef long long LL;

const int N = 2e5+10;

void solve()
{
    int n, m;
    scanf("%d %d", &n, &m);

    string s[6];
    PII mi1 = {6, 6}, mi2 = {6, 6};
    for(int i = 0; i < n; i ++ )
        cin >> s[i];

    for(int i = 0; i < n; i ++ )
    {
        for(int j = 0; j < m; j ++ )
        {
            if(s[i][j] == 'R' && j < mi1.x) mi1 = {j, i};
            if(s[i][j] == 'R' && i < mi2.y) mi2 = {j, i};
        }
    }
    if(mi1 != mi2) puts("NO");
    else puts("YES");

}

int main()
{
    int T;
    scanf("%d", &T);

    while(T -- )
        solve();

    return 0;
}

题目传送门 E

Prblem E

题目大意:

多实例
给定一个数,表示字符串长度,给定两行字符串,包含字符星 ‘ ∗ ’ ‘*’ 和字符点 ‘ . ’ ‘.’ .,目的是变成一个字符星,
条件:当字符星相邻时,其中一个字符星可以移动到零一个字符星的位置,并吞噬另外一个字符星

思路:
先限制字符星的范围,查找最左边的字符星,和最右边的字符星,锁定含字符星的区间,开始计算
( 1 ) (1) (1) 假设 n n n 字符星都相邻时,我们最少需要 n − 1 n-1 n1 步才能吞噬的只剩一个字符星,所以先将答案加上所有字符星的个数,最后在减去 1 1 1

( 2 ) (2) (2) 然后我们判断每一列的情况
同一列分为三种情况 两个都是星,一个星一个点,两个都是点
当遇见上下两格都是字符点时,我们的字符星不得不多走一步, r e s res res++
当遇见两个都是星的情况,我们得向上或向下走一步,但在第一步我们已经 预处理过,此处就不用预处理,
同时将含有星的列加入后面应该处理的字符中
( 3 ) (3) (3) 此时的 ta,tb 字符串的每一列中都含有字符星,我们可以考虑到,
如果为这种情况
′ ∗ ′ ′ . ′ ′ . ′ ′ ∗ ′ (1) \begin{matrix} '*' & '.' \\ '.' & '*' \end{matrix} \tag{1} ..(1)
或者
′ . ′ ′ ∗ ′ ′ ∗ ′ ′ . ′ (2) \begin{matrix} '.' & '*' \\ '*' & '.' \\ \end{matrix} \tag{2} ..(2)
即,两个字符星处于对角线的情况,此时需要多移动一步才能到达另一个字符星的位置达成吞噬的效果

代码如下:

#include <iostream>
#include <algorithm>
#include <cstdio>

using namespace std;

const int N = 1010;

int n;
int T;

void solve()
{
    int n;
    string a, b;
    string ta = "", tb = "";
    cin >> n >> a >> b;
    int res = 0;

    int l, r;
    for(int i = 0; i < n; i ++ )
    {
        if(a[i] == '*' || b[i] == '*')
        {
            l = i;
            break;
        }
    }
    for(int i = n-1; i >= 0; i -- )
    {
        if(a[i] == '*' || b[i] == '*')
        {
            r = i;
            break;
        }
    }


    for(int i = l; i <= r; i ++ )
    {
        if( a[i] == '*') res ++;
        if( b[i] == '*') res ++;
        if( a[i] == '.' && b[i] == '.' ) res ++;
        else ta += a[i], tb += b[i];
    }

    for(int i = 0; i < ta.size() - 1; i ++ )
    {
        if( (ta[i] == '.' && tb[i+1] == '.') || (tb[i] == '.' && ta[i+1] == '.') )
        {
            res ++;
            ta[i] = ta[i+1] = tb[i] = tb[i+1] = '*';
        }
    }

    cout << res - 1 << endl;

    return;
}

int main()
{
    scanf("%d", &T);

    while(T -- )
        solve();

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AC自动寄

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值