https://github.com/Alibaba-Gemini-Lab/OpenCheetah
5. CrypTen
CrypTen是Facebook于2019年在论文《CRYPTEN: Secure Multi-Party Computation Meets Machine Learning》提出的框架。
该框架基于PyTorch实现,可以使机器学习从业者能够使用安全的计算技术,在保护数据隐私的场景下实现半诚实的机器学习模型训练。
源代码:
https://github.com/facebookresearch/CrypTen
官网:
https://crypten.ai
6. CrypTFlow2
CrypTFlow2是微软Deevashwer Rathee等人在CCS’2020的发表论文《CrypTFlow2: Practical 2-Party Secure Inference》提出的框架。
该框架基于茫然传输(Oblivious Transfer, OT)提出了安全比较的一种新的协议,并对该协议进行了深度优化。然后,利用该比较协议设计了面向神经网络的多个算子协议,例如ReLU、Truncation、faithful Division (divisor is public), Avgpool、和Maxpool等。
源代码:
https://github.com/mpc-msri/EzPC
7. EMP-toolkit
EMP-toolkit由XiaoWang,AlexJ.Malozemoff,andJonathanKatz在2016年提出,实现了零知识证明、OT、混淆电路等安全多方计算基本模块,实现语言包括Python、C++等。
源代码:
https://github.com/emp-toolkit
8. FRESCO
FRESCO由Alexandra Institute于2020年提出,该框架是一个高效的安全计算框架,提供了许多常用的安全功能的标准库,以便快速实现新的复杂功能,在应用程序中使用。FRESCO支持并行化和预处理等技术,使其能够扩展到大型计算。
FRESCO框架只实现了不诚实多数计算,对算术电路(SPDZ和SPDZ2k )具有恶意安全,对二进制电路具有半诚实安全。
源代码:
https://github.com/aicis/fresco

本文介绍了多个安全多方计算框架,如CrypTen、CrypTFlow2、EMP-toolkit等,涵盖了Facebook、微软、Safeheron等公司的实现。这些框架基于PyTorch、JavaScript等,支持隐私保护的机器学习和分布式计算。此外,还提供了一份详尽的网络安全学习资源,包括零基础入门、面试题、黑客技术等内容,助力网络安全工程师提升技能。
最低0.47元/天 解锁文章
804

被折叠的 条评论
为什么被折叠?



