paper:Spatial heterogeneity modeling of water quality based on random forest
regression and model interpretation
Keywords:
Water quality assessment Machine learning Random forest regression Driving force analysis
Shapley additive explanations
水质模型:
QUAL2K MIKE 11 Ecotaihu
数据驱动模型,机器学习模型:
人工神经网络、增强回归树和支持向量机等机器学习算法在水质评估中表现良好,并且在大多数情况下,在预测精度方面优于传统统计方法。
Shapley Additive exPlanations (SHAP)是一种可加性特征归因方法,其计算性能有所提高,与人类直觉的一致性更好(Lundberg and Lee, 2017)。与其他解释方法相比,SHAP不仅解决了多重共线性问题,而且考虑了变量之间可能存在的协同效应(Lundberg et al, 2020)。这些优点使SHAP成为一个强大的模型解释器,并已在许多研究中使用。
影论响特征的平均绝对SHAP值的柱状图
把SHAP_value样本取绝对值的平均值从而得到每个特征的重要程度
学习参考文章:SHAP全解析:机器学习、深度学习模型解释保姆级教程 - 文章 - 开发者社区 - 火山引擎
采用随机森林回归(random forest regression)方法对太湖流域水质空间分布进行了模拟。构建了流域特征与水质监测数据之间的经验关系,并在此基础上进行了水质异质性评价。本研究的主要内容是:1)开发并验证流域水质评价的机器学习模型;2)利用训练好的模型对研究区域的水质空间分布进行预测和评价;3)基于SHAP方法对影响水质的重要流域特征进行评估和解释。