我愿称之无敌!SHAP可解释性学习+聚类分析最新暴力涨点方案!

2025深度学习发论文&模型涨点之——SHAP可解释性学习+聚类分析

SHAP(SHapley Additive exPlanations)是一种基于博弈论的可解释性方法。它将机器学习模型的输出解释为特征对输出的贡献值。SHAP值是根据Shapley值(来自博弈论)计算得到的,能够衡量每个特征在模型预测中所起的作用大小。

  • 在博弈论中,Shapley值用于公平地分配合作博弈中的收益。例如,假设有一群人合作完成一项任务并获得收益,Shapley值可以确定每个人对收益的贡献程度。在机器学习模型中,特征就像是合作的“玩家”,模型的输出(如预测结果)是“收益”。

  • Shapley值的计算考虑了所有可能的特征组合。对于一个有n个特征的模型,需要考虑2n种特征组合情况。不过,SHAP通过一些优化算法(如SHAP的TreeSHAP算法针对树模型进行优化)来高效地近似计算Shapley值。

小编整理了一些SHAP可解释性学习+聚类分析论文】合集,以下放出部分,全部论文PDF版皆可领取。

需要的同学扫码添加我

回复“SHAP可解释性学习+聚类分析”即可全部领取

图片

论文精选

论文1:

Beyond explaining: XAI-based Adaptive Learning with SHAP Clustering for Energy Consumption Prediction

超越解释:基于XAI的自适应学习与SHAP聚类用于能源消耗预测

方法

    • SHAP值计算:利用SHapley Additive exPlanations (SHAP)计算每个特征对模型预测的贡献值,为模型解释提供基础。

      聚类分析:通过DBSCAN算法对SHAP值进行聚类,识别数据中的不同模式和异常点。

      模型自适应调整:根据聚类结果调整模型的超参数,如最大深度和正则化参数,以提高模型对数据分布变化的适应性。

      自动化超参数调整:结合自动化超参数调整算法(AHT),优化模型的初始参数设置。

    图片

    创新点

              • SHAP聚类:将SHAP值与聚类分析结合,为模型预测提供可解释性的同时,识别数据中的不同模式,提升模型对数据分布变化的适应性。

                性能提升:实验表明,该方法在测试集上的均方根误差(RMSE)和决定系数(r2)指标上优于传统自适应超参数调整方法(AHT),具体表现为更低的RMSE和更高的r2值。

                模型复杂性与性能平衡:通过迭代调整模型的超参数,如最大深度和正则化参数,有效平衡了模型复杂性与预测性能,减少了过拟合的风险。

                跨领域适用性:该方法不仅适用于能源消耗预测,还成功应用于金融困境预测和电力消耗预测等其他领域,展示了其广泛的适用性。

                图片

              论文2:

              Combining SHAP-driven Co-clustering and Shallow Decision Trees to Explain XGBoost

              结合SHAP驱动的共聚类和浅决策树来解释XGBoost

              方法

                  • SHAP值计算:利用SHAP框架计算每个特征对XGBoost模型预测的贡献值。

                    共聚类分析:通过基于Goodman-Kruskal τ的共聚类算法对数据实例和特征进行同时聚类,优化特征和数据实例之间的关联。

                    浅决策树生成:针对每个聚类生成浅决策树,使用聚类中最重要的特征子集进行训练,以提供简洁的决策路径。

                    局部解释:通过SHAP值将新数据实例映射到最近的聚类,并使用对应的浅决策树提供局部解释。

                    图片

                  创新点

                            • SHAP驱动的共聚类:首次将SHAP值与共聚类结合,为XGBoost模型提供全局解释,通过共聚类优化特征和数据实例之间的关联。

                              性能提升:在多个数据集上,该方法的保真度(fidelity)与现有方法相当,但决策路径的平均长度显著缩短,具体表现为比现有方法XGBTA和MaSDT更短的决策路径。

                              简洁性与可解释性:生成的浅决策树具有更高的可解释性,能够以简洁的决策路径形式提供局部解释,满足法律透明度要求。

                              模型无关性:该方法不仅适用于XGBoost,还可以扩展到其他基于梯度提升树的模型,具有广泛的适用性。

                              图片

                            论文3:

                            K-SHAP: Policy Clustering Algorithm for Anonymous Multi-Agent State-Action Pairs

                            K-SHAP:匿名多智能体状态-动作对的策略聚类算法

                            方法

                            • 世界策略学习:将问题建模为模仿学习任务,学习一个世界策略来模拟所有智能体的行为。

                              SHAP值计算:利用SHAP值解释世界策略的预测,将每个状态-动作对的SHAP值作为新的特征空间。

                              K-Means聚类:在SHAP值空间中应用K-Means算法,将匿名状态-动作对聚类到不同的策略簇中。

                              策略识别:通过聚类结果识别不同的智能体策略,为每个簇分配相应的策略标签。

                              图片

                            创新点

                                      • 匿名状态-动作对聚类:首次提出针对匿名多智能体状态-动作对的策略聚类方法,解决了在金融等领域的匿名数据问题。

                                        性能提升:在合成市场数据和真实金融市场数据上,K-SHAP的聚类性能显著优于现有方法,如K-Means、ClusterGAN和DCN等,具体表现为更高的ARI、NMI和纯度分数。

                                        策略识别能力:能够有效识别不同的智能体策略,为市场参与者的行为分析和策略研究提供了新的工具。

                                        适应性:该方法适用于不同的市场场景和智能体行为模式,具有广泛的适用性和适应性。

                                        图片


                                      论文4:

                                      Shapley-based Explainable AI for Clustering Applications in Fault Diagnosis and Prognosis

                                      基于Shapley值的可解释人工智能在故障诊断和预测中的聚类应用

                                      方法

                                        • Shapley值计算:利用SHAP和蒙特卡洛采样方法计算Shapley值,为模型预测提供特征贡献度量。

                                          降维与可视化:通过UMAP(Uniform Manifold Approximation and Projection)技术进行降维,以便于聚类和可视化。

                                          密度聚类:使用HDBSCAN(Hierarchical Density-Based Spatial Clustering of Applications with Noise)算法进行聚类,识别数据中的密集区域。

                                          规则生成:利用SkopeRules生成高精度的决策规则,以描述聚类结果。

                                          图片

                                        创新点

                                            • 半监督聚类:提出了基于Shapley值的半监督聚类框架,适用于部分标记数据集,解决了实际工业应用中数据标记不完整的问题。

                                              性能提升:在半导体制造热图数据集上,半监督Shapley聚类相比于无监督聚类,显著提高了聚类质量,减少了未聚类样本的比例,具体表现为更高的NMI值和更低的未聚类样本比例。

                                              高精度规则生成:生成的聚类规则具有高精度,能够以简洁的形式描述聚类结果,为故障诊断和预测提供了可解释的依据。

                                              多视角分析:在涡扇发动机预测案例中,该方法不仅能够预测当前健康状态,还能预测故障组件和剩余使用寿命,为预测性维护提供了全面的决策支持。

                                              图片

                                            小编整理了SHAP可解释性学习+聚类分析文代码合集

                                            需要的同学扫码添加我

                                            回复“ SHAP可解释性学习+聚类分析”即可全部领取

                                            图片

                                            ### Java 文件操作中的权限问题解决方案 当遇到 `java.io.FileNotFoundException` 或者类似的异常提示 `(Access is denied)` 时,通常是因为程序试图访问或修改某个文件或目录时缺乏必要的权限。以下是可能的原因以及对应的解决方案: #### 原因分析 1. **目标路径的权限不足** 如果尝试在受保护的位置(如 C 盘根目录或其他受限区域)创建文件,则可能会因为操作系统级别的权限限制而失败[^3]。 2. **文件已被占用** 若目标文件已经被其他进程打开并锁定,则当前程序将无法对其进行写入或覆盖操作[^4]。 3. **用户账户控制 (UAC)** Windows 系统下的 UAC 功能可能导致即使是以管理员身份运行的应用也无法获得某些敏感位置的操作许可。 4. **网络驱动器或共享资源上的权限冲突** 当处理位于远程服务器或通过局域网挂载的存储设备上的数据时,可能存在额外的身份验证需求或是更严格的 ACL 设置阻止了正常流程执行。 5. **错误配置的安全策略** 错误设置的目标文件夹安全性选项也可能阻碍正常的读/写行为;比如未赋予 Everyone 组足够的权利来完成所需动作。 #### 解决策略 针对上述提到的各种可能性,这里给出几个可行的办法帮助克服此类障碍: ##### 方法一:调整保存路径至非特权区 建议把新建立文档放置于用户的个人资料空间内(例如 Documents),而不是系统盘或者其他特殊分区下。这样可以有效规避大部分由 OS 强加给开发者带来的不便之处。 ```java @Test public void createInUserDirectory(){ String userHome = System.getProperty("user.home"); String filePath = userHome + "\\Documents\\news1.txt"; File file = new File(filePath); try { boolean created = file.createNewFile(); if(created){ System.out.println("文件已成功创建!"); } }catch(IOException ex){ ex.printStackTrace(); } } ``` ##### 方法二:提升应用启动级别 如果确实有必要继续沿用原始指定地址的话,那么可以通过右击项目入口(.bat,.jar etc.)选择“以管理员身份运行”,从而临时提高整个会话期间所享有的授权等级以便顺利完成任务。不过需要注意的是这种方法仅适用于桌面端环境,在服务模式或者自动化脚本场景里并不适用。 另外也可以考虑修改 MANIFEST.MF 中 Main-Class 的定义部分加入如下参数实现自动请求最高权限: ```properties Manifest-Version: 1.0 Main-Class: com.example.MainApp Request-UAC-Elevation: true ``` ##### 方法三:确认无竞争性锁存在 确保没有任何第三方软件正在使用即将要操纵的那个具体实例之前,请务必关闭所有关联窗口和服务进程后再试一次新的调用逻辑测试看效果如何变化。 ##### 方法四:审查并修正NTFS属性分配情况 前往涉及的具体子目录上面击鼠标右键-> 属性 -> 安全标签页 ,检查现有列表里面是否有对应主体条目缺失或者是其拥有的作用范围不足以满足实际业务诉求 。如果没有发现合适的匹配项则手动新增进去即可解决问题。 --- ### 注意事项 尽管提供了多种途径去缓解这个问题的影响程度,但在生产环境中还是推荐遵循最小化原则只授予刚好够用的那一份功能集就好,避免过度开放带来不必要的安全隐患风险。
                                            评论
                                            添加红包

                                            请填写红包祝福语或标题

                                            红包个数最小为10个

                                            红包金额最低5元

                                            当前余额3.43前往充值 >
                                            需支付:10.00
                                            成就一亿技术人!
                                            领取后你会自动成为博主和红包主的粉丝 规则
                                            hope_wisdom
                                            发出的红包
                                            实付
                                            使用余额支付
                                            点击重新获取
                                            扫码支付
                                            钱包余额 0

                                            抵扣说明:

                                            1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                                            2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                                            余额充值