联邦学习实战-2-用FATE从零实现横向逻辑回归(1),2024年最新面试必问

因为之前上传命令会自动将原始的本地文件转为DTable格式

flow data upload -c upload_data.json

注意,我使用的是新版本,新版本支持命令行直接使用

如果提示没有flow命令,那么可能没有使用提供的conda环境,解决如下:

source bin/init_env.sh

{

“data”: {

“board_url”: “http://127.0.0.1:8080/index.html#/dashboard?job_id=202108151639113656812&role=local&party_id=0”,

“job_dsl_path”: “/home/jiangbo/FATE/standalone_fate_master_1.6.0/jobs/202108151639113656812/job_dsl.json”,

“job_id”: “202108151639113656812”,

“job_runtime_conf_on_party_path”: “/home/jiangbo/FATE/standalone_fate_master_1.6.0/jobs/202108151639113656812/local/job_runtime_on_party_conf.json”,

“job_runtime_conf_path”: “/home/jiangbo/FATE/standalone_fate_master_1.6.0/jobs/202108151639113656812/job_runtime_conf.json”,

“logs_directory”: “/home/jiangbo/FATE/standalone_fate_master_1.6.0/logs/202108151639113656812”,

“model_info”: {

“model_id”: “local-0#model”,

“model_version”: “202108151639113656812”

},

“namespace”: “homo_host_breast_train”,

“pipeline_dsl_path”: “/home/jiangbo/FATE/standalone_fate_master_1.6.0/jobs/202108151639113656812/pipeline_dsl.json”,

“table_name”: “homo_breast_1_train”,

“train_runtime_conf_path”: “/home/jiangbo/FATE/standalone_fate_master_1.6.0/jobs/202108151639113656812/train_runtime_conf.json”

},

“jobId”: “202108151639113656812”,

“retcode”: 0,

“retmsg”: “success”

}

访问board_url可以在浏览器中看到对应的详情:

img

对于breast_2_train.csv以及测试集合同样的过程:

测试集上传到两个参与方,并各自转换为DTable格式

{

“file”: “data/breast_2_train.csv”,

“head”: 1,

“partition”: 16,

“work_mode”: 0,

“table_name”: “homo_breast_2_train”,

“namespace”: “homo_guest_breast_train”

}

// host

{

“file”: “data/breast_eval.csv”,

“head”: 1,

“partition”: 16,

“work_mode”: 0,

“table_name”: “homo_breast_1_eval”,

“namespace”: “homo_host_breast_eval”

}

// guest

{

“file”: “data/breast_eval.csv”,

“head”: 1,

“partition”: 16,

“work_mode”: 0,

“table_name”: “homo_breast_2_eval”,

“namespace”: “homo_guest_breast_eval”

}

3.2 模型训练


借助FATE,我们可以使用组件的方式来构建联邦学习,而不需要用户从新开始编码,FATE构建联邦学习Pipeline是通过自定义dsl和conf两个配置文件来实现:

DSL 配置和运行配置 V1

dsl文件:用来描述任务模块,将任务模块以有向无环图(DAG)的形式组合在一起。

conf文件:设置各个组件的参数,比如输入模块的数据表名;算法模块的学习率、batch大小、迭代次数等。

我们本实验使用的是模型:逻辑回归

进入examples/dsl/v1/homo_logistic_regression文件夹中:

使用test_homolr_train_job_dsl.json、test_homolr_train_job_conf.json两个文件来辅助构建横向联邦学习模型

3.2.1 DSL配置文件

为了让任务模型的构建更加灵活,目前 FATE 使用了一套自定的领域特定语言 (DSL) 来描述任务。在 DSL 中,各种任务模块(例如数据读写 data_io,特征工程 feature-engineering, 回归 regression,分类 classification)可以通向一个有向无环图 (DAG) 组织起来。通过各种方式,用户可以根据自身的需要,灵活地组合各种算法模块。

DSL 的配置文件采用 json 格式,实际上,整个配置文件就是一个 json 对象 (dict)。在这个 dict 的第一级是 “components”,用来表示这个任务将会使用到的各个模块。用户需要使用模块名加数字 _num 作为对应模块的 key,例如 dataio_0,并且数字应从 0 开始计数。

具体的参数见官方文档连接(上面)

test_homolr_train_job_dsl.json:

定义了四个模块已经构成了基本的联邦学习流水线(feature_scale_0为1.6.0新增),可直接使用(复制一份)

{

“components” : {

// 数据IO组件,用于将本地数据转为DTable

“dataio_0”: {

“module”: “DataIO”,

“input”: {

“data”: {

“data”: [

“args.train_data”

]

}

},

“output”: {

“data”: [“train”],

“model”: [“dataio”]

}

},

// 特征工程模块

“feature_scale_0”: {

“module”: “FeatureScale”,

“input”: {

“data”: {

“data”: [

“dataio_0.train”

]

}

},

“output”: {

“data”: [“train”],

“model”: [“feature_scale”]

}

},

// 横向逻辑回归组件

“homo_lr_0”: {

“module”: “HomoLR”,

“input”: {

“data”: {

“train_data”: [

“feature_scale_0.train”

]

}

},

“output”: {

“data”: [“train”],

“model”: [“homolr”]

}

},

// 模型评估组件,如果未提供测试数据集则自动使用训练集

“evaluation_0”: {

“module”: “Evaluation”,

“input”: {

“data”: {

“data”: [

“homo_lr_0.train”

]

}

}

}

}

}

这里的args.train_data是根据下面的运行配置conf来的

其次配置文件之间的指定关系如下:

llixaM

3.2.2 运行配置 Submit Runtime Conf

每个模块都有不同的参数需要配置,不同的 party 对于同一个模块的参数也可能有所区别。为了简化这种情况,对于每一个模块,FATE 会将所有 party 的不同参数保存到同一个运行配置文件(Submit Runtime Conf)中,并且所有的 party 都将共用这个配置文件。

除了 DSL 的配置文件之外,用户还需要准备一份运行配置(Submit Runtime Conf)用于设置各个组件的参数。

test_homolr_train_job_conf.json 修改如下:

{

// 创始人

“initiator”: {

“role”: “guest”,

“party_id”: 10000

},

“job_parameters”: {

“work_mode”: 0 // 0代表单机版,1代表集群版

},

// 所有参与此任务的角色

// 每一个元素代表一种角色以及承担这个角色的party_id,是一个列表表示同一角色可能有多个实体ID

“role”: {

“guest”: [

10000

],

“host”: [

10000

],

// 仲裁者

“arbiter”: [

10000

]

},

// 对于权限角色的进一步参数配置

“role_parameters”: {

“guest”: {

“args”: {

“data”: {

“train_data”: [

{

“name”: “homo_breast_2_train”, // 修改DTable的表名

“namespace”: “homo_guest_breast_train” // 修改命名空间

}

]

}

},

“dataio_0”: {

“label_name”: [“y”] // 添加标签对应的列属性名称

}

},

“host”: {

“args”: {

“data”: {

“train_data”: [

{

“name”: “homo_breast_1_train”, // 同理修改

“namespace”: “homo_host_breast_train”

}

]

}

},

“dataio_0”: {

“label_name”: [“y”] // 添加标签对应的列属性名称

},

“evaluation_0”: {

“need_run”: [

false

]

}

}

},

// 设置模型训练的超参数信息

“algorithm_parameters”: {

“dataio_0”: {

“with_label”: true,

“label_name”: “y”,

“label_type”: “int”,

“output_format”: “dense”

},

“homo_lr_0”: {

“penalty”: “L2”,

“optimizer”: “sgd”,

“tol”: 1e-05,

“alpha”: 0.01,

“max_iter”: 10,

“early_stop”: “diff”,

“batch_size”: 500,

“learning_rate”: 0.15,

“decay”: 1,

“decay_sqrt”: true,

“init_param”: {

“init_method”: “zeros”

},

“encrypt_param”: {

“method”: null

},

“cv_param”: {

“n_splits”: 4,

“shuffle”: true,

“random_seed”: 33,

“need_cv”: false

}

}

}

}

关于角色,解释如下:

  • arbiter是用来辅助多方完成联合建模的,它的主要作用是聚合梯度或者模型。比如纵向lr里面,各方将自己一半的梯度发送给arbiter,然后arbiter再联合优化等等。

  • guest代表数据应用方。

  • host是数据提供方。

  • local是指本地任务, 该角色仅用于upload和download阶段中。

3.2.3 提交参数,训练模型

Job submit

  • 介绍: 提交执行pipeline任务。

  • 参数:

| 编号 | 参数 | Flag_1 | Flag_2 | 必要参数 | 参数介绍 |

| :-: | — | — | — | — | — |

| 1 | conf_path | -c | –conf-path | 是 | 任务配置文件路径 |

| 2 | dsl_path | -d | –dsl-path | 否 | DSL文件路径. 如果任务为预测任务,该字段可以不输入。另外,用户可以提供可用的自定义DSL文件用于执行预测任务。 |

执行:

flow job submit -c test_homolr_train_job_conf.json -d test_homolr_train_job_dsl.json

dqV03m

45Ss9k

COVndQ

注意:需要全部为勾号才说明运行成功

可以看到运行的结果:微信图片_20210816183914

3.3 评估模型


为了评估模型的效果,我们重新修改配置以检查效果:

在上传数据时,我们已经将两个评估模型的数据上传,并且转换为DTable格式

现在我们修改dsl配置文件:

{

“components” : {

“dataio_0”: {

“module”: “DataIO”,

“input”: {

“data”: {

“data”: [

“args.train_data”

]

}

},

“output”: {

“data”: [“train”],

“model”: [“dataio”]

}

},

“dataio_1”: {

“module”: “DataIO”,

“input”: {

“data”: {

“data”: [

“args.eval_data”

]

},

“model”: [“dataio_0.dataio”]

},

“output”: {

“data”: [“eval_data”]

}

},

“feature_scale_0”: {

“module”: “FeatureScale”,

“input”: {

“data”: {

“data”: [

“dataio_0.train”

]

}

},

“output”: {

“data”: [“train”],

“model”: [“feature_scale”]

}

},

“feature_scale_1”: {

“module”: “FeatureScale”,

“input”: {

“data”: {

“data”: [

“dataio_1.eval_data”

]

}

},

“output”: {

“data”: [“eval_data”],

“model”: [“feature_scale”]

}

},

“homo_lr_0”: {

“module”: “HomoLR”,

“input”: {

“data”: {

“train_data”: [ // 注意这里是指定训练数据

“feature_scale_0.train”

]

}

},

“output”: {

“data”: [

“train”

],

“model”: [“homolr”]

}

},

“homo_lr_1”: {

“module”: “HomoLR”,

“input”: {

“data”: {

“eval_data”: [ // 注意:这里是指定评估数据

“feature_scale_1.eval_data”

]

},

“model”: [ // 这里指定好模型

“homo_lr_0.homolr”

]

},

“output”: {

“data”: [

“eval_data”

],

“model”: [“homolr”]

}

},

“evaluation_0”: {

“module”: “Evaluation”,

“input”: {

“data”: {

“data”: [

“homo_lr_0.train”

]

}

}

},

“evaluation_1”: {

“module”: “Evaluation”,

“input”: {

“data”: {

“data”: [

“homo_lr_1.eval_data” // 指定评估数据集

]

}

}

}

}

}

修改conf文件:

{

“role_parameters”: {

“guest”: {

“args”: {

“data”: {

“train_data”: [

{

“name”: “homo_breast_2_train”,

“namespace”: “homo_guest_breast_train”

}

],

“eval_data”: [ // 添加测试集合

{

“name”: “homo_breast_2_eval”,

“namespace”: “homo_guest_breast_eval”

}

]

}

},

“dataio_0”: {

“label_name”: [“y”]

}

},

“host”: {

“args”: {

“data”: {

“train_data”: [

{

“name”: “homo_breast_1_train”,

“namespace”: “homo_host_breast_train”

}

],

“eval_data”: [ // 添加测试集合

{

“name”: “homo_breast_1_eval”,

“namespace”: “homo_host_breast_eval”

}

]

}

},

}

},

}

重新提交任务,查看结果:

flow job submit -c test_homolr_train_job_conf.json -d test_homolr_train_job_dsl.json

DAG图:

微信图片_20210816184140

3.4 多参与方环境配置


上面的方案中有两个参与角色:

  • guest代表数据应用方。

  • host是数据提供方。

下面考虑更多的客户端参与,修改conf文件中的role添加更多的参与方:

(这里为了方便起见,就不再对数据集根据不同的host进行进一步的划分,测试集也是如此)

{

“initiator”: {

“role”: “guest”,

“party_id”: 10000

},

“job_parameters”: {

“work_mode”: 0

},

“role”: {

“guest”: [

10000

],

“host”: [

10000, 10001, 10002 // 新建两个Host

],

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
img

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。**
[外链图片转存中…(img-Gt3pL9td-1712961408592)]
[外链图片转存中…(img-WXcfi9BE-1712961408593)]



既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
[外链图片转存中…(img-AlDwlRR3-1712961408593)]

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-72MorFAJ-1712961408593)]

  • 11
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值