[深度学习] 使用深度学习开发的循线小车(1),2024年Linux运维面试题

这篇博客介绍了如何使用深度学习开发循线小车,重点在于模型的编译生成定点模型以及在Linux环境下的部署。首先,在OE包的Docker镜像中生成校准数据,接着编译模型,成功后将模型文件拷贝到line_follower_model功能包。最后,将模型部署到OriginCar端,替换原有模型并重新编译工作空间,通过特定命令完成部署。
摘要由CSDN通过智能技术生成

image

然后回到OE包的根目录下,加载AI工具链的docker镜像:

cd /home/thomas/Me/deeplearning/horizon_xj3_open_explorer_v2.3.3_20220727/
sh run_docker.sh /data/ 

生成校准数据

在启动的Docker镜像中,完成如下操作:

cd ddk/samples/ai_toolchain/horizon_model_convert_sample/03_classification/10_model_convert/mapper 
sh 02_preprocess.sh 

命令执行过程如下:

thomas@J-35:~/Me/deeplearning/horizon_xj3_open_explorer_v2.3.3_20220727$ sudo sh run_docker.sh /data/ 
[sudo] password for thomas: 
run_docker.sh: 14: [: unexpected operator
run_docker.sh: 23: [: openexplorer/ai_toolchain_centos_7_xj3: unexpected operator
docker version is v2.3.3
dataset path is /data
open_explorer folder path is /home/thomas/Me/deeplearning/horizon_xj3_open_explorer_v2.3.3_20220727
[root@1e1a1a7e24f4 open_explorer]# cd ddk/samples/ai_toolchain/horizon_model_convert_sample/03_classification/10_model_convert/mapper 
[root@1e1a1a7e24f4 mapper]# sh 02_preprocess.sh 

cd $(dirname $0) || exit

python3 ../../../data_preprocess.py \
  --src_dir ./image_dataset \
  --dst_dir ./calibration_data_bgr_f32 \
  --pic_ext .rgb \
  --read_mode opencv
Warning please note that the data type is now determined by the name of the folder suffix
Warning if you need to set it explicitly, please configure the value of saved_data_type in the preprocess shell script
regular preprocess
write:./calibration_data_bgr_f32/xy_008_160_31a8e30a-eca6-11ee-bb07-dfd665df7b81.rgb
write:./calibration_data_bgr_f32/xy_009_160_39c18c40-eca6-11ee-bb07-dfd665df7b81.rgb
write:./calibration_data_bgr_f32/xy_028_092_3327df66-ec9b-11ee-bb07-dfd665df7b81.rgb

模型编译生成定点模型

接下来执行以下命令生成定点模型文件,稍后会在机器人上部署:

cd ddk/samples/ai_toolchain/horizon_model_convert_sample/03_classification/10_model_convert/mapper
sh 03_build.sh

命令执行过程如下:

[root@1e1a1a7e24f4 mapper]# sh 03_build.sh
2024-04-02 21:46:50,078 INFO Start hb_mapper....
2024-04-02 21:46:50,079 INFO log will be stored in /open_explorer/ddk/samples/ai_toolchain/horizon_model_convert_sample/03_classification/10_model_convert/mapper/hb_mapper_makertbin.log
2024-04-02 21:46:50,079 INFO hbdk version 3.37.2
2024-04-02 21:46:50,080 INFO horizon_nn version 0.14.0
2024-04-02 21:46:50,080 INFO hb_mapper version 1.9.9
2024-04-02 21:46:50,081 INFO Start Model Convert....
2024-04-02 21:46:50,100 INFO Using abs path /open_explorer/ddk/samples/ai_toolchain/horizon_model_convert_sample/03_classification/10_model_convert/mapper/best_line_follower_model_xy.onnx
2024-04-02 21:46:50,102 INFO validating model_parameters...
2024-04-02 21:46:50,231 WARNING User input 'log_level' deleted,Please do not use this parameter again
2024-04-02 21:46:50,231 INFO Using abs path /open_explorer/ddk/samples/ai_toolchain/horizon_model_convert_sample/03_classification/10_model_convert/mapper/model_output
2024-04-02 21:46:50,232 INFO validating model_parameters finished
2024-04-02 21:46:50,232 INFO validating input_parameters...
2024-04-02 21:46:50,232 INFO input num is set to 1 according to input_names
2024-04-02 21:46:50,233 INFO model name missing, using model name from model file: ['input']
2024-04-02 21:46:50,233 INFO model input shape missing, using shape from model file: [[1, 3, 224, 224]]
2024-04-02 21:46:50,233 INFO validating input_parameters finished
2024-04-02 21:46:50,233 INFO validating calibration_parameters...
2024-04-02 21:46:50,233 INFO Using abs path /open_explorer/ddk/samples/ai_toolchain/horizon_model_convert_sample/03_classification/10_model_convert/mapper/calibration_data_bgr_f32
2024-04-02 21:46:50,234 INFO validating calibration_parameters finished
2024-04-02 21:46:50,234 INFO validating custom_op...
2024-04-02 21:46:50,234 INFO custom_op does not exist, skipped
2024-04-02 21:46:50,234 INFO validating custom_op finished
2024-04-02 21:46:50,234 INFO validating compiler_parameters...
2024-04-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值